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Some Properties of a Certain Class of Analytic Functions Defined by
a Convolution Operator

Aminat O. Ajiboye∗ and K. O. Babalola

Abstract

In this work, we study some properties of subclass Bαn+1(β)

of the class of analytic functions defined by a convolution

operator. In fact, this class generalizes the class of Yamaguchi

functions. Thereafter, some geometric properties such as in-

clusion, Fekete-Szegö functional and upper bounds for some

Hankel determinants are presented. Indeed, results from some

of our corollaries and remarks show that when some involving

parameters are varied, our results reduce to some existing ones.

1. Introduction

Let ∆ = {z ∈ C : |z| < 1} be a unit disk and let A be the class of analytic
functions of the form:

(1) f(z) = z +
∞∑
j=2

ajz
j , f(0) = f ′(0)− 1 = 0, z ∈ ∆.

Also let S, a subset of A, be the class of univalent functions analytic in ∆. Let

φ(z) = z +

∞∑
j=2

Ajz
j , ψ(z) = z +

∞∑
j=2

Bjz
j ∈ A,
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then the convolution (or Hadamard product) of functions φ(z) and ψ(z) is define
by

(φ ∗ ψ)(z) = z +
∞∑
j=2

AjBjz
j , z ∈ ∆.

Pommerenke [13] defined the qth-Hankel determinants for f ∈ S as

Hq(j) =

∣∣∣∣∣∣∣∣∣
1 aj+1 · · · aj+q−1

aj+1 aj+2 · · · aj+q
...

... · · ·
...

aj+q−1 aj+q · · · aj+2(q−1)

∣∣∣∣∣∣∣∣∣
where j > 1, q > 1 and a1 = 1 for functions in S. Now for q = 2 and j = 1,

(2) |H2(1)| =
∣∣∣∣ 1 a2

a2 a3

∣∣∣∣ = |a3 − a2
2|,

for q = 2 and j = 2,

(3) |H2(2)| =
∣∣∣∣ a2 a3

a3 a4

∣∣∣∣ = |a2a4 − a2
3|

and for q = 3 and j = 1,

|H3(1)| =

∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣
which implies that

(4) |H3(1)| 6 |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|.

Many properties of these determinants have been studied by many researchers
for specific values of parameters j and q. In particular see [4, 10] for more details.
Related to the coefficient estimates in (2) is the problem of estimating the upper
bound of the functional

(5) F(δ, f) := |a3 − δa2
2|

defined by Fekete and Szegö [9] where δ may be a real or complex value. The
determination of sharp upper bounds for the non-linear functional F(δ, f) for any
subclass of A is what is usually termed ”Fekete-Szegö problem”. A remarkable
relationship exists between the functionals (2) and (5) since F(1, f) = |H2(1)|.
See [1, 7, 10] for more details.
In [2, 3], Babalola defined a convolution operator L α

n : A −→ A by

(6) L α
n f(z) = (τα ∗ τ (−1)

α,n ∗ f)(z)



70 Aminat O. Ajiboye and K. O. Babalola

where τα,n(z) = z
(1−z)α−(n−1) and τ

(−1)
α,n is such that

(τα,n ∗ τ (−1)
α,n )(z) =

z

1− z
= z +

∞∑
j=2

zj

for fixed real number α > n+ 1 and n ∈ N ∪ {0}. Simple calculation shows that
(6) is equivalent to

(7) L α
n f(z) = z +

∞∑
j=2

{
(α+ j − 1)!

α!

(α− n)!

(α+ j − n− 1)!

}
ajz

j , z ∈ ∆.

We note from [2, 3] that

L α
0 f(z) = L 0

0 f(z) = f(z)

L 1
1 f(z) = zf ′(z)(8)

L n
n f(z) = Dnf(z)(9)

L α
n+1f(z) = z +

∞∑
j=2

{
(α+ j − 1)!

α!

(α− n− 1)!

(α+ j − n− 2)!

}
ajz

j(10)

(α− n)L α
n+1f(z) = (α− (n+ 1))L α

n f(z) + z(L α
n f(z))′(11)

and

(α− n)(L α
n+1f(z))′ = (α− n)(L α

n f(z))′ + z(L α
n f(z))′′.(12)

where (9) is the well-known Ruscheweyh operator introduced in [14]. Clearly,
(8) =⇒ (9).
Now we define the class Bαn+1(β) as follows.
Definition 1.1. A function f ∈ A is said to be in the class Bαn+1(β) if

(13) Re
L α
n+1f(z)

z
> β, z ∈ ∆

for fixed number α > (n+ 1), n ∈ N ∪ {0} and 0 6 β < 1.
It is interesting to note that (13) is the product combination of geometric ex-
pressions of functions in classes Bαn(β) and Sαn respectively studied in [2] and
[3].
The following classes are equivalent to class Bαn+1(β).

(1) B1
1(0) = T studied in [12].

(2) Bα0 (0) = Y studied in [17].
(3) Bα0 (β) = Y(β) studied in [16].
(4) Bα1 (β) = T (β) in [16].
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In this present work, some of the investigated geometric properties of functions
in Bαn+1(β) are the inclusion, the Fekete-Szegö functional and the upper bounds
of some Hankel determinants.

2. Lemmas

The following lemmas shall be used in proving the theorems that follows:
Firstly, let the class denoted by P consists of analytic functions of the form:

(14) p(z) = 1 +

∞∑
j=1

pjz
j , p(0) = 1, Re p(z) > 0 and z ∈ ∆.

p(z) is known as a function with positive real part in ∆.
Lemma 2.1. ([15]). Let p ∈ P. Then |pj | 6 2, j ∈ N.
Lemma 2.2. ([8]). Let p ∈ P. Then∣∣∣∣p2 − ν

p2
1

2

∣∣∣∣ 6 2 max{1, |1− ν|}, ν ∈ C.

Lemma 2.3. ([5]). Let p ∈ P and suppose

Re
(

1 +
zp′(z)

p(z)

)
>

3β − 1

2β
,

then

Re(p(z)) > 2
1− 1

β ,
1

2
6 β < 1, z ∈ ∆.

The constant 2
1− 1

β is the best possible.
Lemma 2.4. ([6]). Let u = u1+u2i, v = v1+v2i and ψ(u, v) be a complex-valued
function satisfying

(a) ψ(u, v) is continuous in a domain Ω of C2,
(b) (1, 0) ∈ Ω and Re[ψ(1, 0)] > 0,
(c) Reψ(ξ + (1− ξ)u2i, v1) 6 ξ when (ξ + (1− ξ)u2i, v1) ∈ Ω and

2v1 6 −(1− ξ)(1 + u2
2) for real number 0 6 ξ < 1.

If p ∈ P such that (p(z), zp′(z)) ∈ Ω and Re[ψ(p(z), zp′(z))] > ξ for z ∈ ∆. Then
Re[p(z)] > ξ in z ∈ ∆.
Lemma 2.5. ([11]). Let p ∈ P. Then

p2 =
1

2
p2

1 +
x

2
(4− p2

1)

and

p3 =
1

4
p3

1 +
1

2
p1(4− p2

1)x− 1

4
p1(4− p2

1)x2 +
1

2
(4− p2

1)(1− |x|2)z

for some x, z such that |x| 6 1, |z| 6 1.



72 Aminat O. Ajiboye and K. O. Babalola

Lemma 2.6. ([2]). Let f ∈ Bαn+1(β), then

aj = (1− β)Jjpj−1 and |aj | 6 2(1− β)Jj

where

(15) Jj =
α!(α+ j − (n+ 2))!

(α− (n+ 1))!(α+ j − 1)!
.

3. Main Results

Our results are as follows.
Theorem 3.1. Bαn+1(β) ⊂ Bαn(β).

Proof. Let f ∈ A satisfy (13) so that for p ∈ P, define the equation

(16)
z(L α

n f(z))′

L α
n f(z)

= 1 +
zp′(z)

p(z)
.

Now using (12) in (16) gives

(σ − n)L α
n+1f(z)

L α
n f(z)

− (σ − (n+ 1))L α
n f(z)

L α
n f(z)

= 1 +
zp′(z)

p(z)
(17)

(σ − n)L α
n+1f(z)

L α
n f(z)

= (σ − n) +
zp′(z)

p(z)
(18)

so that by divide through by (σ − n) gives

L α
n+1f(z)

L α
n f(z)

= 1 +
zp′(z)

(σ − n)p(z)
.

But (13) can be expressed as

Re
(
p(z) +

zp′(z)

(σ − n)

)
> β

so that

Re
(
p(z) +

zp′(z)

(σ − n)

)
− β > 0.

Now define the function

ψ(u, v) = u+
v

(σ − n)
− β

on a domain Ω = C× C of C2.
Clearly ψ(u, v) satisfies the condition (a) of Lemma 2.4. More so, (1, 0) ∈ Ω
implies ψ(1, 0) = 1 + 0 − β and Reψ(1, 0) = 1 − β > 0, 0 6 β < 1. Thus, with
ξ = 0 in Lemma 2.4,

ψ(u2i, v1) = u2i +
v1

(σ − n)
− β

and Reψ(u2i, v1) = v1
(σ−n) − β < 0 whenever v1 6

−(1+u22)
2 .



Some Properties of a Certain Class of Analytic Functions Defined by a Convolution Operator 73

Therefore, ψ satisfies all the conditions of Lemma 2.4 so,

ReL
α
n f(z)

z
> 0 =⇒ f ∈ Bσ

n(β)

thus the proof is complete. �

Theorem 3.2. If f ∈ A satisfies the condition

Re
z(L α

n+1f(z))′

L α
n+1f(z)

>
3β − 1

2β
,

then

Re
L α
n+1f(z)

z
> 2

1− 1
β ,

1

2
6 β < 1, z ∈ ∆.

Proof. For z ∈ ∆, define the function

(19) p(z) =
L α
n+1f(z)

z

and by logarithmic differentiation,

(20)
p′(z)

p(z)
=

(L α
n+1f(z))′

L α
n+1f(z)

− 1

z
.

Using (12) in (20) gives

(21)
p′(z)

p(z)
=

(L α
n f(z))′

L α
n+1f(z)

+
z(L α

n f(z))′′

(σ − n)L α
n+1f(z)

− 1

z

so that

Re
(

1 +
zp′(z)

p(z)

)
= Re

(
z(L α

n f(z))′

L α
n+1f(z)

+
z2(L α

n f(z))′′

(σ − n)L α
n+1f(z)

)
>

3β − 1

2β

and using (12) implies

Re
(
z(L α

n+1f(z))′

L α
n+1f(z)

)
>

3β − 1

2β
(4.10)

which by Lemma 2.3 implies Re p(z) > 2
1− 1

β , 1
2 ≤ β < 1 as required. �

Corollary 3.3. If f ∈ A satisfies the condition of Theorem 3.2, then f(z) ∈
Bαn+1(2

1− 1
β ).

Corollary 3.4. Let n = 0 in Theorem 3.2 and suppose

Re
(

1 +
zf ′′(z)

f ′(z)

)
>

3β − 1

2β
,

then

Ref ′(z) > 2
1− 1

β .
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Corollary 3.5. Let β = 1
2 in Corollary 3.4 and suppose

Re
(

1 +
zf ′′(z)

f ′(z)

)
>

1

2
,

then

Ref ′(z) >
1

2
.

Theorem 3.6. Let f ∈ Bαn+1(β). Then for δ ∈ C,

∣∣a3 − δa2
2

∣∣ ≤ 2J3(1− β) max

{
1,

∣∣∣∣1− 2δ(1− β)J2
2

J3

∣∣∣∣}
where 0 6 β < 1 and Jj is defined by (15).

Proof. Using Lemma 2.6 and for δ ∈ C,∣∣a3 − δa2
2

∣∣ =
∣∣(1− β)J3p2 − δ(1− β)2J2

2p
2
1

∣∣
= (1− β)J3

∣∣∣∣p2 − η
p2

1

2

∣∣∣∣(22)

where

η =
2δ(1− β)J2

2

J3
.

Using Lemma 2.4 implies

(23)

∣∣∣∣p2 − η
p2

1

2

∣∣∣∣ ≤ 2 max

{
1,

∣∣∣∣1− 2δ(1− β)J2
2

J3

∣∣∣∣}
and putting (23) into (22) completes the proof. �

Corollary 3.7. Let δ = 1. Then |a3 − a2
2| ≤ 2J3(1− β).

Theorem 3.8. Let f ∈ Bαn+1(β). Then

|a2a4 − a2
3| ≤

9(1− β)2J2J4

2
+ 4(1− β)2J2

3

where 0 6 β < 1 and Jj is defined by (15).

Proof. Using Lemma 2.6 in (3) gives

a2a4 − a2
3 = (1− β)J2p1 × (1− β)J4p3 − (1− β)2J2

3p
2
2

= (1− β)2J2J4[p1p3 − λp2
2](24)
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where λ =
J2
3

J2J4
. Now using Lemma 2.5 leads to

|a2a4 − a2
3| =

(1− β)2J2J4

4

∣∣∣∣p4
1 + 2(4− p2

1)p2
1x− (4− p2

1)p2
1x

2

+ 2(4− p2
1)(1− |x|2)p1z − λp4

1 − λ2(4− p2
1)p2

1x− λ(4− p2
1)2x2

∣∣∣∣
Now for |p1| 6 2, letting p1 = p, assume without restriction that p ∈ [0, 2] and
applying triangle inequality with µ = |x| gives

|a2a4 − a2
3| =

(1− β)2J2J4

4

{
p4 + 2(4− p2)p2µ+ (4− p2)p2µ2

+ 2(4− p2)(1− µ2)p+ λp4 + λ2(4− p2)p2µ+ λ(4− p2)2µ2

}
.

Factoring out µ gives

(25) |a2a4 − a2
3| ≤

(1− β)2J2J4

4

{
(λ+ 1)p4 + [2(4− p2)(λ+ 1)p2]µ

+ (4− p2)[p2 + λ(4− p2)]µ2 + 2(4− p2)p− 2(4− p2)pµ2

}
= F (µ, p).

Now from (25) we have

∂F (µ, p)

∂µ
=

(1− β)2J2J4

4

{
2(4− p2)(λ+ 1)p2

+ 2(4− p2)[p2 + λ(4− p2)]µ− 4(4− p2)pµ

}
Observe that ∂F (µ,p)

∂µ > 0 in the interval µ ∈ [0, 1]. This implies that ∂F (µ,p)
∂µ is an

increasing function of µ on the closed interval [0, 1], thus from (25) the maximum
point is at µ = 1, hence

(26) F (1, p) ≤ (1− β)2J2J4

4
2{−p4 + 6p2 + 8λ} = G(p).

Now,

(27) G′(p) =
(1− β)2J2J4

2
{−4p3 + 12p}

so that at the critical points, G′(p) = 0 implies

(1− β)2J2J4

2
{−4p3 + 12p} = 0.
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Solving for p implies that p0 = 0 or p1 =
√

3 and from (27),

G′′(p) =
(1− β)2J2J4

2
{−12p2 + 12}

G′′(p0) =
(1− β)2J2J4

2
{12} > 0 (a minimum point)

G′′(p1) =
(1− β)2J2J4

2
{−36 + 12} < 0 (a maximum point).

From (26), G(p) attains maximum at

G(p1) =
(1− β)2J2J4

2
{−(
√

3)4 + 6(
√

3)2 + 8λ}

hence using λ =
J2
3

J2J4
and simplifying completes the proof. �

Theorem 3.9. Let f ∈ Bαn+1(β). Then

|a2a3 − a4| 6
2(1− β)[2(1− β)J2J3 + 3J4]

3

√
2[2(1− β)J2J3 + 3J4]

3J4

where 0 6 β < 1 and Jj is defined by (15).

Proof. Using Lemma 2.6 in (3) leads to

a2a3 − a4 = (1− β)2J2J3p1p2 − (1− β)J4p3.

Now using Lemma 2.5 we have

a2a3 − a4 =
(1− β)2J2J3p1[p2

1 + (4− p2
1)x]

2

− AJ4[p3
1 + 2(4− p2

1)p1x− (4− p2
1)p1x

2 + 2(4− p2
1)(1− |x|2)z]

4

where A = (1− β) and it simplifies to

4(a2a3−a4) = 2(1− β)2J2J3p
3
1 − (1− β)J4p

3
1

+ 2(1− β)2(4− p2
1)J2J3p1x− 2(1− β)(4− p2

1)J4p1x

+ (1− β)(4− p2
1)J4p1x

2 − 2(1− β)(4− p2
1)(1− |x|2)J4z.
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By Lemma 2.1, |p1| 6 2, then letting p1 = p, assume without restriction that
p ∈ [0, 2] and applying triangle inequality with η = |x| we have

4|a2a3 − a4|
6{2(1− β)2J2J3p

3 + (1− β)J4p
3 + 2(1− β)(4− p2)J4}

+
{

2(1− β)2(4− p2)J2J3p+ 2(1− β)(4− p2)J4p
}
η

+
{

(1− β)(4− p2)J4p− 2(1− β)(4− p2)J4

}
η2

=F (η, p).(28)

Now from (28) we have

(29)
∂F (η, p)

∂η
=
{

2(1− β)2(4− p2)J2J3p+ 2(1− β)(4− p2)J4p
}

+
{

2(1− β)(4− p2)J4p− 2(1− β)(4− p2)J4

}
η

Observe that ∂F (η,p)
∂η > 0 in the interval η ∈ [0, 1]. This implies that ∂F (η,p)

∂η is an

increasing function of η on the closed interval [0, 1], thus from (28) the maximum
point is at η = 1, hence

(30) F (1, p) ≤ −2(1− β)J4p
3 + 4(1− β)[2(1− β)J2J3 + 3J4]p = G(p).

Now,

(31) G′(p) = −6(1− β)J4p
2 + 4(1− β)[2(1− β)J2J3 + 3J4]

Note that at the critical points, G′(p) = 0 which implies that

−6(1− β)J4p
2 + 4(1− β)[2(1− β)J2J3 + 3J4] = 0

so that p1 =
√

2[2(1−β)J2J3+3J4]
3J4

and from (31),

G′′(p) = −12(1− β)J4p

G′′(p1) = −12(1− β)J4

√2[2(1− β)J2J3 + 3J4]

3J4

 < 0

Now G(p) in (30) attains maximum at

G(p1) ≤
{
−4(1− β)[2(1− β)J2J3 + 3J4]

3

+ 4(1− β)[2(1− β)J2J3 + 3J4]

}√
2[2(1− β)J2J3 + 3J4]

3J4

and simple simplification completes the proof. �
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Theorem 3.10. Let f ∈ Bαn+1(β). Then

|H3(1)| 6 9(1− β)3J2J3J4 + 8(1− β)3J3
3 + 4(1− β)2J3J5

+
4(1− β)2J4[2(1− β)J2J3 + 3J4]

3

√
2[2(1− β)J2J3 + 3J4]

3J4
.

where 0 6 β < 1 and Jj is defined by (15).

Proof. Using Lemma 2.6, Theorems 3.8, 3.9 and Corollary 3.7 in (4) leads to our
assertion. �

Conclusions: A class of generalized analytic functions defined by the well-known
Babalola convolution operator which was earlier studied in [2] was further inves-
tigated in this paper. Some results obtained were its inclusion condition, the
upper estimate of the Fekete-Szegö functional for complex parameter and some
estimates for some Hankel determinants. Varying some parameters in the class
made it to reduce to some known classes earlier studied by some authors. Finally,
some relevant corollaries were presented and a few remarks discussed.
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terminant for a Generalized Subfamily of Analytic Functions Defined by q-Differential Op-
erator. Gulf Journal of Mathematics. 11 (2), 36-43.

[11] Libera J. & Zlotkiewicz E. J. (1982). Coefficient Bounds for the Inverse of a Function
with Derivative in P. Proceedings of the American Mathematical Society. 87, 251-257.

[12] MacGregor T. H. (1962). Function whose Derivative has Positive Real Part. Transactions
of the American Mathematical Society. 104, 532-537.

[13] Pommerenke C. (1966). On the Coefficients and Hankel Determinants of Univalent Func-
tions. Journal of London Mathematical Society. 41 (2), 111-122.

[14] Ruscheweyh S. (1975). New Criteria for Univalent Functions. Proceedings of the American
Mathematical Society. 49, 109-115.

[15] Thomas D. K., Tuneski N. & Vasudevarao A. (2018). Univalent Functions: A Primer.
Walter de Gruyter, Inc., Berlin.

[16] Tuan P. D. & Anh V. V. (1978). Radii of Starlikeness and Convexity for Certain Classes
of Analytic Functions. Journal of Mathematical Analysis and Applications. 64 (1), 146-158.

[17] Yamaguchi K. (1966). On Functions Satisfying Re(f(z)/z) > 0. Proceedings of the Amer-
ican Mathematical Society. 17, 588-591.


	1. Introduction
	2. Lemmas
	3. Main Results
	Conclusions:
	Acknowledgement
	Competing interests:
	Funding:

	References

