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Stability of Solutions for a Class of Second Order Nonlinear
Integro-Differential Equations with Delay
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Abstract

In this paper, we investigate the stability of solutions for

a class of second order nonlinear delay integro-differential

equations by using a suitable Lyapunov-Krasovskǐi functional

with sufficient conditions to establish some new results. An

example is given to show the validity of the results obtained.

1. Introduction

In relevant literature, the mathematical model known as Volterra integro-differen-
tial equation which appeared after its establishment by Vito Volterra in 1926 is
viable and its application is increasing to various fields ([25], [27]). Volterra
integro-differential equations are important effective mathematical models used
to describe many real world phenomena concerning atomic energy, biology, chem-
istry, control theory, economy, engineering technique fields, information theory,
medicine, population dynamics and so on. For a survey on integro-differential
equations, see the following references: Adeyanju et.al [3], Ahmad and Stamova
(Eds.) [4], Burton [6], Burton and Mahfoud [7], Corduneanu [8], Corduneanu and
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Sandberg (Eds.) [9], Da Prato and Iannelli (Eds.) [11], Gripenberg et.al [14],
Lakshmikantham and Mohana [15], Peschel and Mende [19], Staffans [23], Tunç
and Tunç [25] and Wazwaz [26]. Importantly, second order integro-differential
equations appear in stability problems of visco elastic shells (see [5], [12]).
There are various research articles that have been devoted to stability of the first
and second order integro-differential equations which include but not limited to
the following references: [3], [5], [10], [13], [16], [17], [18], [21], [22], [24] and [27]
while there are numerous published papers which considered other aspects of
differential equations using Lyapunov’s direct method to establish their results,
see [1], [2] and [20] to mention a few.
Furthermore, in 2018 Zhao and Meng [28] considered a kind of nonlinear delay
integro-differential equations

(1) x′′ + f(t, x, x′)x′ + g(t, x, x′) + h(x(t− τ)) = p(t, x(t))

∫ t

0
q(s, x′(s))ds

and

(2) x′′ + f(t, x, x′)x′ + g(t, x, x′) + h(x) = p(x(t− τ))

∫ t

0
q(s, x′(s))ds,

where R+ = [0,∞), τ > 0 is a constant while f , g, h, p and q are continuous
functions with respect to the argument displayed explicitly. The authors by
using different Lyapunov funtionals, established the zero solutions for each of the
integro-differential equation with delay and also examined the stability of the
generalized form for each of (1) and (2) with variable delay τ(t) respectively.
Motivated by the work of Zhao and Meng [28], our aim is to obtain sufficient
conditions for the stability of solutions for a class of nonlinear delay integro-
differential equations by using a suitable Lyapunov-Krasovskǐi functional with
sufficient criteria to achieve the new results.
In this work, we consider the nonlinear second order delay integro-differential
equation of the form:

(3) x′′+ a(t)f(t, x, x′)x′+ g(t, x, x′) + h(x(t− τ)) = p(x(t− τ))

∫ t

0
q(s, x′(s))ds,

where R+ = [0,+∞), τ > 0 is a constant and a : R+ −→ R+ while f, g :
R+×R2 −→ R and h : R+ −→ R are continuous with h(0) = 0, p, q : R+×R −→ R
with p(0) = 0 and q(t, 0) = 0. Also, ′ implies differentiation with respect to t.
Indeed, the integro-differential equation (3) extends and improves that of [28]
and it is different from those in the references. Also, we provide an example to
show the validity of our results.
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2. Preliminary Definitions

We give some basic definitions on the stability of solution of integro-differential
equations (see [3] and [6]). Consider the system of first order non-linear and
non-homogeneous Voltera integro-differential equation

(4) X ′(t) = A(t)X(t) +

∫ t

t−τ
F (t, φ, h(X(φ)))g(X(φ))dφ+ E(t,X(t)),

where t ∈ [0,∞), X ∈ Rn, A(t), F (t, φ, h(X(φ))) and E(t,X(t)) are continuous
functions in their respective arguments explicitly displayed, such that 0 ≤ φ ≤
t <∞, h(0) = 0, h(X) 6= 0, X 6= 0, F (t, φ, 0) = 0; h, g : Rn −→ Rn, g(0) = 0 are
continuous functions and τ > 0 is a constant delay.
Let X(t, t0, B), t ≥ t0 be a solution of (4) on [t0 − τ, β), β > 0 such that X(t) =
B(t) on B ∈ [t0−τ, t0] and ‖B(t)‖ = supt∈[t0−τ,t0]‖B(t)‖, where B : [t0−τ, t0] −→
Rn is a continuous initial function.
Then, we have the following definitions:

Definition 2.1. The zero solution of (4) is said to be stable if for each ε > 0 and
t0 ≥ 0, there exists a δ = δ(t0, ε) > 0 such that if ‖B(t)‖ < δ on [t0 − τ, t0], we
have ‖X(t, B)‖ < ε, for all t ≥ t0.

Definition 2.2. The zero solution of (4) is said to be uniformly stable if δ is
independent of t0.

Definition 2.3. The zero solution of the (4) is said to be asymptotically stable
if it is stable and for each t0 ≥ 0, there is a δ > 0 such that t ≥ t0, ‖B(t)‖ < δ on
[0, t0] implies ‖X(t, B)‖ −→ 0 as t −→∞.

3. Main Results

In this section, we give our main results.
We rewrite (3) as the system

(5)

x′ = y

y′ = −a(t)f(t, x, y)y − g(t, x, y)− h(x) +
∫ t
t−τ h

′(x(s))y(s)ds

−p(x)
∫ t

0 q(s, y(s))ds+
∫ t
t−τ p

′(x(s))y(s)ds
∫ t

0 q(s, y(s))ds.

Now, we have the following Theorem.

Theorem 3.1. Consider the system (5) above. There exist positive constants
K1, K2, M , N , Ω1, Ω2, Φ, δ, τ and functions P (t), Q(t) : R+ −→ R+ such that
the following conditions hold:

(c1): a(t) ≥ α > 0, t ∈ R+;
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(c2):
h(x)

x
≥ δ when x 6= 0, for all x ∈ R, δ a constant;

(c3): |h′(x)| ≤ K1, |p′(x)| ≤ K2 and |q(t, y)| ≤ Q(t)|y| for y 6= 0, and
x, y ∈ R;

(c4): f(t, x, 0) = 0, g(t, x, 0) = 0,
f(t, x, y)

y2
≥M ,

g(t, x, y)

y
≥ N when y 6= 0

for all x, y ∈ R;
(c5): |p(x)| ≤ P (t), Ω1 ≤ P (t) ≤ Ω2, Q(t) ≤ Φ, t ∈ R+;

(c6):
K2τ

α

∫ ∞
0

Q(s)ds ≤ 2M ;

(c7): Ω2

∫ ∞
0

Q(s)ds+
(Ω2 +K2τ)

Ω1
Φ

∫ ∞
0

P (s)ds

+K1

(
τ − y−2

∫ t

t−τ
y2(s)ds

)
≤ 2N when y 6= 0;.

Then, the zero solution of system (5) is stable.
Proof. We define the Lyapunov-Krasovskǐi functional V (t, x, y) = V (t) as

follows:

V (t, x, y) =
1

2
y2+

∫ x

0
h(φ)dφ+λ

∫ 0

−τ
ds

∫ t

t+s
y4(θ)dθ+µ

∫ t

0
ds

∫ ∞
t
|p(x(θ))|Q(s)y2(s)dθ,

where λ and µ are two positive constants to be determined. So, since we have∫ x

0

h(φ)

φ
φdφ ≥

∫ x

0
δ φdφ =

δ

2
x2.

Then,

V (t, x, y) ≥ δ

2
x2 +

1

2
y2 > 0

which shows that the functional is positive definite.
Differentiating V (t) along the solution path of (5), we have

dV (t)

dt
= yy′ + h(x)y + λτy4 − λ

∫ t

t−τ
y4(s)ds+ µQ(t)y2(t)

∫ ∞
t
|p(x(θ))|dθ

−µ|p(x(t))|
∫ t

0
Q(s)y2(s)ds

= −a(t)f(t, x, y)y2 − g(t, x, y)y + λτy4 + y

∫ t

t−τ
h′(x(s))y(s)ds

−p(x)y

∫ t

0
q(s, y(s))ds+ y

∫ t

t−τ
p′(x(s))y(s)ds

∫ t

0
q(s, y(s))ds

(6) − λ
∫ t

t−τ
y4(s)ds+ µQ(t)y2

∫ ∞
t
|p(x(θ))|dθ − µ|p(x(t))|

∫ t

0
Q(s)y2ds.
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Applying conditions (c3) and the inequality 2ab ≤ a2 + b2, we have the following:

y(t)

∫ t

t−τ
h′(x(s))y(s)ds ≤ |y(t)|

∫ t

t−τ
|h′(x(s))||y(s)|ds

≤ K1

2

∫ t

t−τ
[y2(t) + y2(s)]ds

(7) =
K1

2
τy2 +

K1

2

∫ t

t−τ
y2(s)ds.

y

∫ t

t−τ
p′(x(s))y(s)ds

∫ t

0
q(s, y(s))ds ≤ |y(t)|

∫ t

t−τ
|p′(x(s))||y(s)|ds

∫ t

0
|q(s, y(s))|ds

≤ K2

2

∫ t

t−τ
[y2(t) + y2(s)]ds

∫ t

0
Q(θ)|y(θ)|dθ

≤ K2

4
τy4

∫ ∞
0

Q(θ)dθ +
K2

2
τ

∫ t

0
Q(s)y2(s)ds

(8) +
K2

4

∫ t

t−τ
y4(s)ds

∫ ∞
0

Q(s)ds.

−yp(x(t))

∫ t

0
q(s, y(s))ds ≤ |y(t)||p(x(t))|

∫ t

0
|q(s, y(s))|ds

≤ |y(t)||p(x(t))|
∫ t

0
Q(s)|y(s))|ds

≤ 1

2
|p(x(t))|

∫ t

0
Q(s)[y2(t) + y2(s)]ds

(9) ≤ |p(x(t))|
2

y2

∫ ∞
0

Q(s)ds+
|p(x(t))|

2

∫ t

0
Q(s)y2(s)ds.

Substituting inequalities (7), (8) and (9) in equation (6), we now have

V ′(t) ≤ −a(t)f(t, x, y)y2 − g(t, x, y)y + λτy4 +
K1

2
τy2 +

K1

2

∫ t

t−τ
y2(s)ds

+
|p(x(t))|

2
y2

∫ ∞
0

Q(s)ds+
|p(x(t))|

2

∫ t

0
Q(s)y2(s)ds+

K2

4
τy4

∫ ∞
0

Q(θ)dθ

+
K2

2
τ

∫ t

0
Q(s)y2(s)ds+

K2

4

∫ t

t−τ
y4(s)ds

∫ ∞
0

Q(s)ds− λ
∫ t

t−τ
y4(s)ds

+µQ(t)y2

∫ ∞
t
|p(x(θ))|dθ − µ|p(x(t))|

∫ t

0
Q(s)y2(s)ds.
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Using the conditions (c1), (c4) and (c5), we obtain

V ′(t) ≤ −
[
αM−K2

4
τ

∫ ∞
0

Q(s)ds−λτ
]
y4−

[
N−Ω2

2

∫ ∞
0

Q(s)ds−µΦ

∫ ∞
0

P (s)ds−K1

2
τ
]
y2

+
[K2

4

∫ ∞
0

Q(s)ds− λ
] ∫ t

t−τ
y4(s)ds+

[Ω2

2
+
K2

2
τ − µΩ1

] ∫ t

0
Q(s)y2(s)ds

+
K1

2

∫ t

t−τ
y2(s)ds.

Hence, we choose λ =
K2

4

∫ ∞
0

Q(s)ds, µ =
(Ω2 +K2τ)

2Ω1
and by (c6), c7, it is clear

that

V ′(t) ≤ −
[
αM − K2

2
τ

∫ ∞
0

Q(s)ds
]
y4 −

[
N − Ω2

2

∫ ∞
0

Q(s)ds

−(Ω2 +K2τ)

2Ω1
Φ

∫ ∞
0

P (s)ds− K1

2
τ
]
y2

+
K1

2

∫ t

t−τ
y2(s)ds ≤ 0.

Thus, the zero solution of system (5) is stable and the proof completed.

Remark. If h(x(t− τ)) = h(x), where t > τ , τ > 0 for t ∈ R+ and x ∈ R. Then
equation (3) reduces to the one considered for Theorem 3 in Zhao and Meng [28].

We now generalise equation (3) to the form with a variable delay τ(t). Such that
its equivalent system now become

x′ = y,

y′ = −a(t)f(t, x, y)y − g(t, x, y)− h(x) +

∫ t

t−τ(t)
h′(x(s))y(s)ds

(10) − p(x)

∫ t

0
q(s, y(s))ds+

∫ t

t−τ(t)
p′(x(s))y(s)ds

∫ t

0
q(s, y(s))ds.

We now give some new conditions to obtain additional result.

Corollary. Let conditions (c1) to (c5) of the above Theorem hold. Consider
the system (10) with a variable delay τ(t) satisfying the following additional
conditions:

(c8): there are τ > 0 and 0 < β < 1, such that 0 ≤ τ(t) ≤ τ and τ ′(t) ≤ β;

(c9):
K2τ

α
· (2− β)

(1− β)

∫ ∞
0

Q(s)ds ≤ 4M.
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Then, the zero solution of system (10) with a variable delay τ(t) is stable.

Proof. Though the proof is similar to that of the above Theorem. But now,
with the application of condition (c8) we have

V ′(t) ≤ −
[
αM−K2

4
τ

∫ ∞
0

Q(s)ds−λτ
]
y4−

[
N−Ω2

2

∫ ∞
0

Q(s)ds−µΦ

∫ ∞
0

P (s)ds−K1

2
τ
]
y2

+
[K2

4

∫ ∞
0

Q(s)ds−λ(1−β)
] ∫ t

t−τ
y4(s)ds+

[Ω2

2
+
K2

2
τ −µΩ1

] ∫ t

0
Q(s)y2(s)ds

+
K1

2

∫ t

t−τ
y2(s)ds.

Now, we choose λ =
K2

4(1− β)

∫ ∞
0

Q(s)ds, µ =
(Ω2 +K2τ)

2Ω1
and by (c7), (c9), it

is obvious that

V ′(t) ≤ −
[
αM − (2− β)

4(1− β)
K2τ

∫ ∞
0

Q(s)ds
]
y4 −

[
N − Ω2

2

∫ ∞
0

Q(s)ds

−(Ω2 +K2τ)

2Ω1
Φ

∫ ∞
0

P (s)ds− K1

2
τ
]
y2

+
K1

2

∫ t

t−τ
y2(s)ds ≤ 0.

3.1. Example. To show the effectiveness of the results, we consider the following
second order nonlinear delay integro-differential equation of the form:

(11) x′′(t)+5(t+x2(t)+x′2(t))x′(t)+
1

4
x′(t)+5x(t−1) = e−2(t−1)

∫ t

0
e−sx′(s)ds

which is a special case of equation (3). This equation (11) can be re-written as
follows:
Let x′(t) = y(t), then

(12) y′(t)+5(t+x2(t)+y2(t))y(t)+
1

4
y(t)+5x(t−1)−e−2(t−1)

∫ t

0
e−sy(s)ds = 0.

In the example above,
f(t, x, y) = (t+ x2 + y2)

g(t, x, y) =
1

4
y, h(x) = 5x

p(x) = e−2t,

∫ t

0
q(s, y(s))ds =

∫ t

0
e−sy(s)ds = x(t) and τ = 1.
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Figure 1: Stability of solutions for the nonlinear delay integro-differential
equation (12)

Thus, by using Maple 2015 we have been able to establish the asymptotic stability
of solutions for the second order nonlinear delay integro-differential equation (12)
which is a special case of (3). This improve on the results achieve by Zhao and
Meng [28].
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