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Some Generalizations of Opial-type Inequalities on Time Scales

E. E. Aribike1∗, O. Anthonio2, S. A. Aniki3 and K. Rauf4

Abstract

Opial-type inequalities has grown into a substantial field

with many applications in proving the existence and

uniqueness of solutions of initial and boundary value prob-

lems for differential equations. We shall obtain Hua’s

inequality on time scales The methodology employed in

this paper is the Hölder’s inequality for convex functions.

1. Introduction

A Polish Mathematician called Zdzidlaw Opial established an inequality involving
integrals of a function and its derivatives which is named after him as Opial
inequality. Opial inequality has proved to be one of the most useful inequalities in
analysis. The inequality has been receiving continual attention [14], [15], [16] and
[17]. Its application in proving the existence and uniqueness of solutions of initial
and boundary value problems for differential equations have been particularly
striking. [10] established the following integral inequality:
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Theorem 1.1. If f(x) is absolutely continuous on [0, h] be such that f(0) =
f(h) = 0 and f(x) > 0 on (0, h), then

(1)

∫ h

0

∣∣f(x)f ′(x)
∣∣ dx ≤ h

4

∫ h

0
(f ′(x))2dx.

In (1) , h
4 is the best possible constant.

Shortly after the publication of Opial inequality, [9] provided a modified version
of Opial′ results. He observed that the absolute in (1) is not necessary if f(x) is
absolutely continuous and his result is stated as follows:

Theorem 1.2. If f(x) is absolutely continuous on [0, h] with f(0) = 0, then

(2)

∫ h

0
f(x)f ′(x)dx ≤ h

2

∫ h

0
(f ′(x))2dx.

A non-trivial generalization on Theorem 1.2 was established by Hua [8]

Theorem 1.3. Let x(t) be absolutely continuous on [0, a] and x(0) = 0. If l > 0,
then

(3)

∫ a

0
|xl(t)x′(t)|dt ≤ al

l + 1

∫ a

0
|x′(t)|l+1dt.

[12] established the following:

Theorem 1.4. Let f(t) and g(t) be convex and increasing function on [0,∞]
with f(0) = 0 and let p(t) ≥ 0, p′(t) > 0, t ∈ [α, r] with p(t) = 0. If x(t) is
absolutely continuous on [α, r) and x(α) = 0, then

(4) f

(∫ r

α
p′(t)g

(
|x′(t)|
p′(t)

)
dt

)
≥
∫ r

α
p′(t)g

(
|x′(t)|
p′(t)

)[
f ′
(
p(t)g

(
|x(t)|
p(t)

))]
dt.

[6] got a result which is a special case of Shum-Opial′s inequality. This occurs
when the main functions do not change in the interval [a, b]. In tir work, they
took a class of functions that satisfied a condition and obtain generalization of the
special case using adaptation of Jensen′s inequality for convex functions. They
obtained the following result:

Theorem 1.5. Let f(t) be continuous and non-decreasing function on [a, b], and
0 ≤ a ≤ b < ∞ with f(t) > 0 for t > 0. Suppose that p ≥ l ≥ 1, q > 0, 0 <
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l + q ≤ p and δ > 0. Then,

(5)

∫ b

a
tδl−1f q(t)

[∫ b

t
f(s)ds

]l
dt

≤ [δ−1](lp−(l+q)+p)/p

[
p

l + q

] [∫ b

a
(fp(s))s

lp(1+δ)
l+q

−1
ds

] (l+q)
p

+ [δ−1](lp−(l+q)+p)/p

[
p

l + q

]
a
δ
(l+q)
p

[∫ b

a
fp(s)s

lp(1+δ)
l+q

−(1+δ)
ds

] (l+q)
p

.

[1] generalized Opial-type inequalities for independent variables as follows:

Theorem 1.6. Let m ≥ 2 and let fi, D
1fi....D

mfi, i = 1, ...., n be real valued
continuous function on τ with fi(t)|ti = ai = 0, i = 1, ...., n, j = 1, ....m. or
fi(t)|t1 = a1 = Di(t)|t2 = a2 = .... = Di(t)|tm = am = 0 i = 1, ...., n
Let F be a non-negative and differentiable function on [0,∞] with F (0, ...., 0) = 0
such that DiF , i = 1, · · · , n are non-negative, continuous and non-decreasing on
[0,∞]n. Then the integral inequality
(6)∫
τ

n∑
i=1

DiF |f1(t)|, ..., |fn(t)||Dmfi(t)|dt ≤ F
[∫

τ
|Dmf1(t)|dt, ...,

∫
τ
|Dmfn(t)|dt

]
.

The time scale analysis discussed in [4] and [5] summarises the time scale calculus
while [13] discussed several possible applications on time scales.
However, the study of dynamic inequalities of Opial types on time scales is initi-
ated by [3] and only recently received a lot of attention and lots of papers have
been written.
Throughout this work, we denote fσ: = foσ, where the forward jump operator
σ is defined by σ(t) := inf {s ∈ T : s > t}. Also, if t < supT and σ(t) = t, then
t is called right-dense and if t > infT and ρ(t) = t, then t is called left-dense.
Points that are right-dense and left-dense at the same time are called dense. The
graininess function µ : T → R+ is defined by µ := σ(t) − t. If Tk := T − {m}
if T has a left-scattered maximum m, otherwise Tk := T. We will assume that
supT = ∞ and define the time scale interval [a, b]T by [a, b]T := [a, b ∩ T]. We
will frequently use the results in the following theorem as discussed in [7].

Theorem 1.7. Assume f : T → R is a function and let t ∈ Tk. Then we have
the following:

(1) If f is differentiable at t, then f is continuous at t.



Some Generalizations of Opial-type Inequalities on Time Scales 25

(2) If f is continuous at t and t is right-scattered, then f is differentiable at
t with

f∆(t) =
f(σ(t))− f(t)

µ(t)

(3) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
(4) If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f(t).

In order to describe classes of functions that are integrable, the following theorem
is introduced.

Theorem 1.8. Assume f : T→ R.
(1) If f is continuous, then f is rd-continuous,
(2) If f is rd-continuous, then f is regulated,
(3) The jump operator σ is rd-continuous.
(4) If f is regulated or rd-continuous, then so is fσ.
(5) Assume f is continuous. If g : T→ R is regulated or rd-continuous, then

fog has that property too.

[11] obtained the following results:

Theorem 1.9. Let T be a time scale with t ∈ T. Let ς, ζ be real numbers,
let h, q ∈ Crd([0, b]T,R) where h and q are positive rd-continuous functions on
[α, β]T such that

∫
[0,t] r(t)∆(s) < ∞. We define ϕ as convex function and if

x : [α, β]T −→ R is delta differentiable with α(0) = 0, then we have
(7)∫

[α,β]
(
√
q(s))ς+1x∆(s)xς(s)∆(s)

≤ 1

1 + ζ
(β − α)ς−ζ

(∫
[α,β]

∆(s)

(
√
h(s))1+ζ

)∫
[α,β]

(
√
h(s)q(s))1+ζx∆(s)1+ζ∆(s).

[2] obtained the following results using modified Jensen’s inequality on time scales:

Theorem 1.10. Let T be a time scale with t ∈ T. Let ς, ζ and σ be real numbers ,
let h, q ∈ Crd([0, b]T,R) and positive rd-continuous functions on [α, β]T such that
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[0,t] r(t)∆(s) < ∞ and q(t) is non-increasing on [0, b] . We define ϕ as convex

function and if x : [α, β] −→ R is delta differentiable with α(0) = 0, then we have

(8)

∫
[α,β]

(
√
q(t))ς+σx∆(t)σx(t)ς∆(t)

≤ σ

ς + σ
(β − α)ς

(∫
[α,β]

∆(s)

(
√
h(s))ς+σ

)∫
[α,β]

(
√
q(s)h(s)x∆(s))ς+σ∆(s)

Theorem 1.11. Let T be a time scale and α, β ∈ T and let ϕ : [α, β]T −→ R+ be
a absolutely continuous convex function and Crd([α, β]T,R+) be such that ξ(t) is
non-increasing on [α, β] and Suppose that x : [α, β]T −→ R+ is delta differentiable
with x(α) = 0. Then,

(9)

∫
[α,β]

ξ(t)x∆(t)ηxς(t)∆(t)

≤ η

η + ς
(β − α)ςη

∫
[α,β]

(
ξ

η

η+ς (t)x∆(t)η
) η+ς

η

∆(t).

The aim of this work is to generalize some inequalities of Opial-type by using
Jensen′s and Hölder’s inequalities for convex functions.

2. Adaptation of some inequalities

Adaptations of Jensen′s and Hölder’s inequalities are considered in this section.

2.1. Adaptations of Jensen′s inequality. Let ϕ, ψ be continuous and convex
and let h(s, t) be non-negative, s ≥ 0, t ≥ 0 and λ be non-decreasing. Let
−∞ ≤ ξ(t) ≤ η(t) < ∞, and suppose ϕ has a continuous inverse (ϕ)−1(which is
necessarily concave).
Then,

(10) ϕ−1

∫ η(t)
ξ(t) h(s, t)dλ(s)∫ η(t)

ξ(t) dλ(s)

 ≤
∫ η(t)

ξ(t) (ϕ)−1h(s, t)dλ(s)∫ η(t)
ξ(t) dλ(s)

 ,
with the inequality reversed if ϕ is concave. The inequality (10) is known as
Jensen’s inequality for convex function. Setting ϕ(u) = ul, ξ(t) = 0 and η(t) = t,
then as a consequence of (10), we have for l ≥ 1

(11) (φ(t))l = φ

[∣∣∣∣∣
∫ t

0 h(s, t)dλ(s)∫ t
0 dλ(s)

∣∣∣∣∣
] 1
l

≤

[∫ t
0 h(s, t)

1
mdλ(s)∫ t

0 dλ(s)

]
.
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2.2. Adaptations of Hölder′s inequality. Hölder’s inequality on time scale as
expressed in [4] states that

(12)

∫ β

α
|f(t)g(t)|∆t ≤

[∫ β

α
|f(t)|k ∆t

] 1
k
[∫ β

α
|g(t)|l ∆t

] 1
l

,

where α, β ∈ T and f, g ∈ Crd(I,R), k > 1 and 1/k + 1/l = 1.

(13) |c+ d|m ≤ 2m−1(|c|m + |d|m),m ≥ 1,

where c, d are positive real numbers.

3. Main Result

Theorem 3.1. Let x(t) be absolutely continuous on [0, a] and x(0) = 0. Let l > 0.
Then, the following inequality holds

(14)

∫ a

0
|x(t)|l

∣∣x′(t)∣∣ dt ≤ al

l + 1

∫ a

0

∣∣x′(t)∣∣l+1
dt.

In (14), equality holds if and only if,

(15) x(t) = ct

Proof. Suppose q = 1 and p = l + 1 in (5). Then,

(16)

∣∣∣∣∣
∫ b

a
tδl−1f(t)

[∫ b

t
f(s)ds

]l
dt

∣∣∣∣∣ ≤ [δ−1]laδ
[∣∣∣∣∫ b

a
f l+1(s)s(l−1)(1+δ)ds

∣∣∣∣]
+ [δ−1]l

[∣∣∣∣∫ b

a
f l+1(s)sl(1+δ)−1ds

∣∣∣∣] .
We write (16) as

(17)

∣∣∣∣∣
∫ b

a
tδl−1f(t)

[∫ b

t
f(s)ds

]l
dt

∣∣∣∣∣ ≤ [δ−1]laδ
[∫ b

a

∣∣∣f l+1(s)
∣∣∣ s(l−1)(1+δ)ds

]
+ [δ−1]l

[∫ b

a

∣∣∣f l+1(s)
∣∣∣ sl(1+δ)−1ds

]
.

Rearranging (17), we have

(18)

∣∣∣∣∣
∫ b

a
tδl−1f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣ dt ≤ [δ−1]l
[∫ b

a

∣∣∣f l+1(t)
∣∣∣ tl+δl−1dt

]
+ [δ−1]laδ

[∫ b

a

∣∣∣f l+1(t)
∣∣∣ tl−δ+δl−1dt

]
.
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Rearranging and factoring out tδl−1, we have
(19)

0 ≤∫ b

a
tδl−1

[
[δ−1]l

∣∣∣f l+1(t)
∣∣∣ tl + [δ−1]laδ

∣∣∣f l+1(t)
∣∣∣ tl−δ − ∣∣∣∣∣f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣
]
dt.

If t ≥ 0 on [a, b], (19) becomes
(20)

0 ≤
∫ b

a

[
[δ−1]l

∣∣∣f l+1(t)
∣∣∣ tl + [δ−1]laδ

∣∣∣f l+1(t)
∣∣∣ tl−δ − ∣∣∣∣∣f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣
]
dt.

From (20)

(21)

∫ b

a

∣∣∣∣∣f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣ dt ≤
∫ b

a
[δ−1]l

∣∣∣f l+1(t)
∣∣∣ tldt

+ [δ−1]laδ
∫ b

a

∣∣∣f l+1(t)
∣∣∣ tl−δdt.

Set tl = bl for t ∈ [a, b] and l > 0, (21) gives

(22)

∫ b

a

∣∣∣∣∣f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣ dt ≤ [δ−1]lbl
∫ b

a

∣∣∣f l+1(t)
∣∣∣ dt

+ [δ−1]laδ
∫ b

a

∣∣∣f l+1(t)
∣∣∣ t−δdt.

Since |f(t)| = |−f(t)|, (22) becomes

(23)

∫ b

a

∣∣∣∣∣−f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣ dt ≤ [δ−1]lbl
∫ b

a

∣∣∣−f l+1(t)
∣∣∣ dt

+ [δ−1]laδbl
∫ b

a

∣∣∣−f l+1(t)
∣∣∣ t−δdt.

Set δ = (1 + l)
1
l (23), we obtain

(24)

∫ b

a

∣∣∣∣∣−f(t)

[∫ b

t
f(s)ds

]l∣∣∣∣∣ dt ≤ bl

l + 1

∫ b

a

∣∣∣−f l+1(t)
∣∣∣ dt

+
bl

l + 1
a(l+1)

1
l

∫ b

a

∣∣∣−f l+1(t)
∣∣∣ t−δdt.
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Set x(t) =
∫ b
t f(s)ds and |x′(t)| = |−f(t)| into (24), we have

(25)

∫ b

a
|x(t)|l

∣∣x′(t)∣∣ dt ≤ bl

l + 1

∫ b

a

∣∣x′(t)∣∣l+1
dt

+
bl

l + 1
a(l+1)

1
l

∫ b

a

∣∣x′(t)∣∣l+1
dt.

with a→ 0 in (25) and set b = h, l = 1 we have (2)

(26)

∫ h

0
|x(t)|

∣∣x′(t)∣∣ dt ≤ h

2

∫ h

0

∣∣x′(t)∣∣2 dt.
The proof is complete. �
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[10] Opial Z. (1960). Surune intégalité. Annales Polonici Mathematici. 8, 29-32.
[11] Rauf K. & Anthonio Y. O. (2017). Time scales on Opial-type inequalities. Journal of

Inequalities and Special Functions. 8 (2), 1-13.
[12] Rozanova G. I. (1972). Integral Inequalities with Derivatives and with Arbitrary Convex

Functions. Uc. Zap. Mosk. Gos. Ped. In-ta im. Lenima. 460, 58-65.



30 E. E. Aribike, O. Anthonio, S. A. Aniki and K. Rauf

[13] Spedding V. (2003). Taming nature’s numbers. New Scientist, 28-31.
[14] Zhao C. J. & Cheung W. S. (2011). On some Opial-type inequalities. Journal of In-

equalities and Applications. 11 (7), 60-75.
[15] Zhao C. J. & Cheung W. S. (2012). On Opial-type inequalities with higher order partial

derivatives. Journal of Inequalities and Applications. 25, 2156-2161.
[16] Zhao C. J. & Cheung W. S. 2012. On some Opial′s type inequalities for an integral

operator with homogeneous kernel. Journal of Inequalities and Applications. 123, 1-5.
[17] Zhao C. J. (2019). On Opial′s type integral inequalities. Multidisciplinary Digital Pub-

lishing Institute. 7 (4), 375-383.


	1. Introduction
	2. Adaptation of some inequalities
	2.1. Adaptations of Jensen's inequality
	2.2. Adaptations of Hlder's inequality

	3. Main Result
	Acknowledgement
	Competing interests:
	Funding:

	References

