Nigerian Journal of Mathematics and Applications
Volume 23, (2014), 77 — 95
©Nig. J. Math. Appl. http : | Jwww.kwsman.com

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL
PARALLEL MACHINES

LApaMu M.O. AND 2ABaAss O.

ABSTRACT

Problems involving Just-In-Time (JIT) scheduling provide an
interesting and difficult challenge, which is addressed critically
within this paper. This study considers the scheduling of parallel
identical machines to maximize the (weighted) number of on-time
jobs. This problem is known to be NP-complete. Three problems
were dealt with in this paper. Two greedy heuristics with time
complexity O(nlogn) are provided for maximizing the weighted
number of on-time jobs with equal processing times. Two greedy
heuristic algorithms are proposed for solving the unweighted
number of on-time jobs on m parallel identical machines using
two different approaches. It is shown by computational and
worst-case analysis that these algorithms with time complexity
O(n™*11ogn) will give results very close to the optimal solutions.
Lastly, an optimal greedy heuristic solution is provided for solving
the problem of maximizing the number of on-time agreeable
jobs with equal processing time with a running time given as
O(nlogn). A proof for feasibility of the algorithm is presented.

Received December 22, 2014. * Corresponding author.
2010 Mathematics Subject Classification. 49Nxx & 00Axx.
Key words and phrases. Just-In-Time, Parallel machines, NP Complete, Scheduling,
Heuristics
'Department of Mathematics, University of Lagos
2 Department of Computer Science, University of Lagos; e-mail: adamumus@yahoo.com
s

78 Adamu M.O. and Abass O.

1. INTRODUCTION

The recently developed area of Just-In-Time (JIT) scheduling is concerned
with scheduling jobs to minimize the total cost associated with both early and
tardy completion. Most studies in this area have considered minsum objectives
(in which the schedule sought minimizes the total sum of earliness/tardiness cost
incurred for all jobs), or minmax objectives (in which the schedule sought min-
imizes the earliness/tardiness cost of the worst scheduled job ([12]), [3] gave a
comprehensive review on the earliness and tardiness scheduling problems. A
complete review of literature can be found in [1]. A complete review of liter-
ature on single machine is in [2]. Some papers that have considered this area
of study, are [8], [9], [7] and [15]. The objective is to minimize the (weighted)
number of early/tardy jobs or maximize the (weighted) number of on-time jobs
on parallel identical machines. [11] and [5] have considered problems with due
window on parallel machines where the objective is to find an optimal schedule
with minimum earliness-tardiness penalty. The other two that have considered
a type of our problem are [10] and [13]. Though in their case, the jobs are
completed exactly at their due dates, that is the due windows for the jobs are
zeros. They have shown the problem to be NP-hard. Though [12] and [15] and
[17] are some few works that have considered a type of our problem on a single
machine. This problem was shown to be NP-complete by [15] and [17]. The
objective of this work is to find a schedule that minimizes the (weighted) num-
ber of early and tardy jobs or, in general to maximize the (weighted) number
of on-time jobs on m parallel identical machines. [4] described how some clas-
sical scheduling criteria have been integrated into a constraint-based scheduling
model. Their study focused on minimization of the weighted number of late jobs.
New lower bounding technique and new constraint propagation schemes were
proposed. They allowed them to optimally solve instances consisting of up to 50
jobs of the problem of minimizing the weighted number of late jobs on parallel
machines with release dates (P|ri| > w;U;). They also showed how the bicriteria
problem P|r;|Fh(Sw;U;, Tyax) can be solved.

[16] also presented a branch and bound to minimize the weighted number of
tardy jobs on either identical or non-identical processors. Bounds came from
a surrogate relaxation resulting in a multiple-choice knapsack. Extensive com-
putational experiments indicated problems with 400 jobs and several machines
can be solved quickly. The results also indicated what parameters affect solution
difficulty for this algorithm approach.

Consider an n job parallel identical machines scheduling problem. Let each
job have a processing time, earliest start time and latest due date, an earliness
weight, and a tardiness weight (penalty, cost). In a given schedule, let each job
be penalized by the fixed individual earliness (tardiness) weight, if it is completed
prior to (after) its due dates. A schedule is sought that will minimize the total

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 79

cost incurred for all penalized jobs. As mentioned, contrary to previously studied
models ([11] and [5]), here the penalty is not a function of the size of deviation
from the due dates.

In the setting studied here, exact completion time is crucial and an early or
tardy job is equally penalized, however early/tardy it is (In the general case the
earliness cost may be different from the tardiness cost). Thus, it would cost just
as much to miss a due date by a short period of time as by a long period of time.
Cases of problems of this sort is significant and has many practical applications,
e.g. in chemical or hi-tech industries, where often parts need to be ready at
specific times in order to meet certain required conditions (arrival of other parts,
specific temperature, pressure, e.t.c.). Production of perishable items (e.g. food,
blood, drugs, photographic film) under deterministic demand has a similar cost
structure. The remaining parts of the paper are as follows: Section two considers
the problem formulation. The problem to maximize the weighted number of on-
time jobs with equal processing time is outlined in section three. The problem
to maximize the number of on-time jobs is presented in section four. In section
five, the problem to maximize the number of on-time agreeable jobs with equal
processing time is considered and finally, in section six, the conclusion.

2. PROBLEM FORMULATION

There are n independent jobs, scheduled on m machines, which are simulta-
neously available from time zero, each having an interval rather than a point in
time, called due window of the job, and the left end and the right end of the win-
dow are called, respectively, the earliest start time a; > 0 and the latest due date
d; > 0. There is no penalty when a job is completed within its due window, but
earliness (tardiness) penalty is incurred if a job is completed before its earliest
start time (after its latest due date).

For any given schedule S, let pj, t;; and C;(S) = t;; + p; represent the processing
time, actual start time on a given machine and completion time of job 7 on ma-
chine 4, respectively. Job j is said to be early if C;;(S) < aj, tardy if Cy;(S) > d;
and on-time if a; < t;; + p; < d;. In addition, let z;; for j be defined as follows:

| 1, ifa; < Cy(S) < dj, (on — time)
Tij = 0, otherwise

Furthermore, let w; > 0 be the weights for the early /tardy jobs. The mathemat-
ical model of this problem is given as follows:

m n
P : max g E W;Tij

i=1 j=1

80 Adamu M.O. and Abass O.
Such that

J) .

(3) d mi<lj=1,...,n

i=1m

(4) a:ije{0,1},i:1,...,m;j:1,...,71

Constraint (1) insures job j is not finished before its earliest start time a;.
Constraint (2) is the completion time of job j if it is no greater than its latest
due date d;. Constraint (3) insures that a job is assigned to at most one machine,
and constraint (4) forces a job to be either on-time or early/tardy; 1 if on-time
and zero otherwise.

3. MAXIMIZING WEIGHTED NUMBER OF ON-TIME JOBS WITH EQUAL
PROCESSING TIME

In this section, the problem with equal processing time, Py, [p; = p| > > w;xi;
is studied. This problem is strongly NP-complete. If we assume that the jobs are
numbered in Earliest Due Date (EDD) order so that a1 < as < ... < a,. Two
heuristics WOP and DOP are proposed for solving this problem. In this section,
a job is assigned to the machine with the smallest completion time.

3.1. Heuristics for Maximizing the Weighted Number On-Time Jobs
with Equal Processing Time. First Greedy Heuristic for Mazximizing Weighted
Number of On-Time Jobs with Equal Processing Time (WOP)

e Step 1 : Arrange the earliest start time in ascending order

e Step 2 : Assign the first m jobs on the m machines, A job is selected
according to EDD and a tie is broken by highest weighted job (HWJ)
j—m

e Step 3 : If j > n, Goto Step 5 Else Select a machine with the smallest
completion time and assign a job to it according to EDD and break tie
by HWJ

o Step 4 : If max {Cix(5),a;p;} +p; < dj
Then C;(S) = max {Ci(S5),a;jp;} + pj
J=J+1
Goto Step 3
Else
Let job j be moved to @ (tardy jobs),

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 81

j—j+1
Goto Step 3
e Step 5 : Then append the jobs in) to any of the m machines and stop.

Second Greedy Heuristic for Maximizing Weighted Number of On-Time Jobs with
Equal Processing Time (DOP)

e Step 1 : Arrange Ej of all jobs in ascending order
e Step 2 : Assign the first m jobs on the m machines,
A job is selected in ascending order of E; and a tie is broken by highest
weighted job (HWJ)
j—m
e Step 3 : If j > n, Goto Step 5
Else Select a machine with the smallest completion time and assign a job
in ascending order of F;(E; = a;j — p;) and break tie by HWJ
e Step 4 : If max {Ci(S), ajp;j} +pj < d;
Then C;(S) = max {Cix(S), a;p;} + p;
J=J+1,
Goto Step 3
Else
Let job j be moved to @ (tardy jobs),
j+—j+1
Goto Step 3 Step 5 : Then append the jobs in @) to any of the m machines
and stop.

Running time: Step 1 has to do with sorting and that requires logn. Step 2
is repeated m times and requires O(m) time. Step 3 and 4 are repeated at most
nm times and requires O(n) time. Therefore, the time completion, for each of
the heuristics is at most O(nlogn).

3.2. Computational Studies for Weighted Number of On-Time Jobs on
Parallel Machines with Equal Processing Time. Problem Generation
These experiments were designed to test the most effective of the proposed al-
gorithms WOP and DOP. Problems with 500, 1,000, 1,500, 2,000 and 2,500 jobs
were generated to test these heuristics. The number of machines is set at five lev-
els: 2, 5, 10, 15 and 20 . The processing time p; for all set to 40. The integer ear-
liest due date a; is randomly generated in the interval [0,n/mk;] and the integer
latest due date d; is randomly generated in the interval [a; +pj, a; +p; +n/mks].
Two parameters k1 and ko are used and selected from the set {1,5,10,20}. For
each combination of n, k1 and ko 10 instances are generated, i.e. for each value
of n, 160 instances are generated with a weight randomly chosen in [1,10] and
with a total of 8,000 problems (50 replications). The number of machines, m is
fixed at 20. Each problem set was solved on a Pentium 233 MHz processor with
a 32 MB memory.

82 Adamu M.O. and Abass O.

Computational Results

The overall results of the 8,000 test problems are summarized in Table 1. Figures
1 to 10 reveal some important facts about these two algorithms WOP and DOP.
Our simulation results reveal that heuristic DOP performs slightly better than
algorithm WOP. It is also observed that algorithm DOP keeps improving faster
than algorithm WOP as the value of m increases. So, for large m > 20, the gap
between algorithm DOP and WOP will be widening. The only noticed improve-
ment of algorithm WOP over algorithm DOP is at n = 2000 and the number of
machines is 5 (Figure 4).

Table 1: Results for maximizing the weighted number of on-time jobs on
identical parallel machines with Equal Processing Time

Number of Jobs | Heuristics Number of Machines
2 5 10 15 20
WOP 713.1 | 550.36 | 408.68 | 311.7 | 209.9
500 73.6 110.6 | 131.2 | 163.6 | 203.6

DOP 703.66 | 521.78 | 351.16 | 215.32 | 118.92
64.6 87 126.6 | 154.8 | 182.6
WOP 856.4 | 785.34 | 674.84 | 583.88 | 498.32
1000 69.4 | 107.6 135 164 191
DOP 844.28 | 757.78 | 615.84 | 497.04 | 385
89.2 | 119.2 | 151.6 | 185.4 215
WOP 827.62 | 748.08 | 626.3 | 519.34 | 428
1500 68 102.2 | 133.6 | 167.4 | 202.6
DOP 815 | 719.48 | 571.18 | 434.94 | 315.92
75.6 | 1104 | 135.6 | 166.2 195
WOP 793 611.3 | 542.38 | 439.92 | 355.46
2000 61.8 91.6 | 124.2 156 182.4
DOP 788.96 | 664.31 | 486.81 | 355.88 | 243.64
73.8 | 1104 | 134.8 | 165.2 196
WOP 792.44 | 682.08 | 532.14 | 429.4 | 346.76
2500 60.6 88.4 | 122.6 | 1484 | 179.6
DOP 781.26 | 653.94 | 477.66 | 348.32 | 276.7
71.2 | 107.8 132 159.8 | 1914

The performances of both algorithms at m = 2 and m = 5 are very close for
all N. The average CPU time of each of the Heuristics is less than a second.
Moreover, it was observed that the time taken to run heuristics increases with
the increase in the numbers of machines.

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 83

4. MAXIMIZING THE NUMBER OF ON-TIME JOBS

This section continues with a special case (where the weights of the jobs are
equal) of the general problem P,||> > wjz;;. The problem of maximizing the
number of on-time jobs on m parallel machines with due window (P, || > > xij)
will be considered in this section. This problem is also known to be strongly
NP-complete and finding an algorithm to optimally solve the problem is very
unlikely.

Performances of Heuristics at N=500

2

c 4
B S0 b—q% —s— 0P
o 0

2 5 10 15 20 —a—DOP

Number of Machines

Figure 1: Performances of Heuristics at N=500

Performances of Heuristics at NH=1000

0 i i . i ——WOP

P 3 m 15 20 —a— DOp

Number of Machines

Figure 2: Performances of Heuristics at N=1000

Performances of Heuristics at N=2000

1000

g —+—WOP
8 500 L&S

E l:l T T T T DDP

2] 10 15 20

Number of Machines

Figure 3: Performances of Heuristics at N=1500

Adamu M.O. and Abass O.

Peformances of Heuristics at N=2000

1000

SO0 _%

. —+—WOP

2 5 10 15 20 | —+—DOP

Penalty

Number of Machines

Figure 4 : Performances of Heuristics at N=2000

Performances of Heuristics at N=2500

1000

2 —+—WOP
8 500 '%ﬁﬁg

E I:I T T T T DDP

2 5 10 15 20

Number of Machines

Figure 5: Performances of Heuristics at N=2500

Performances of Heuristics on 2
Identical Machines

%ﬁwun____. e
s
=8

0 i i . i —e—WOP
500 1000 1500 2000 2500 —a— DOoP

Humber of Jobs

Figure 6: Performances of Heuristics on 2 Machines

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES...

Performances of Heuristics on 5
ldentical Machines

1000

B0 =

Pemalty

0 T

Number of Jobs

, —e— WOP
500 1000 1500 2000 2500 |—s— DOP

Figure 7: Performances of Heuristics on 5 Machines

Performances of Heuristics on 10
Identical Machines

£ 1000

E o) ity -

E 0 —e— WOP
Sy 1000 4500 20040 2500 —a— DOP

Number of Jobs

Figure 8: Performances of Heuristics on 10 Machines

Performances of Heuristics on 15
ldentical Machines

T T r T ——WOP
500 1000 1500 2000 2500 —a— DOP

Number of Jobs

1000

Penalty

Figure 9: Performances of Heuristics on 15 Machines

85

86 Adamu M.O. and Abass O.

Performances of Heuristics on 20 ldentical
Machines

% 1000
E l:l T . T . T ._l +'|JFI||'DP
00 1000 1500 2000 2500 nop

Number of Jobs

Figure 10 : Performances of Heuristics on 20 Machines

It is clearly better to schedule a penalized job late rather than early, since a
tardy job can be scheduled sufficiently late (with no additional cost) to guarantee
that it will have no effect on the other jobs. Based on this observation, we propose
two heuristic algorithms containing on time and tardy jobs only. Jobs are assigned
machine by machine. In both algorithms the shortest processing time (SPT) rule
is applied to the arrangement of the jobs before scheduling.

[6] considered a similar case of our problem. The input to their problem consists
of n jobs and k machines. Each of the jobs is associated with a release time, a
weight, a deadline, and a processing time on each of the machines. The goal is to
find a non preemptive schedule that maximizes the (weight) cardinal of jobs that
meet their respective deadlines. Our case is an extension of their problem for
the unweighted model. Firstly, our jobs are simultaneously available from time
zero and secondly, our jobs can be scheduled before their earliest start times but
must finish on or after their earliest start times. We are adopting the method of
[6] for solving our problem. The greedy algorithms proposed schedule the jobs
machine by machine, updating the set of jobs to be scheduled on each machine to
include only jobs that have not been scheduled on previous machines. [6] greedy
algorithm schedules the job instance that finishes first among all jobs that can be
scheduled at time t or later and does not take into consideration the deadlines of
the jobs, except for determining whether the jobs are eligible for scheduling.

For our heuristic PO1, we scheduled the jobs in ascending orders of their
earliest start times while for heuristic PO2, the method of [6] is adopted to
schedule the jobs.

4.1. Greedy Heuristics. First Greedy Heuristic Maximizing the Number of On-
Time Jobs (PO1)

e Step 1: Arrange the jobs in ascending orders of their earliest start time
ie., a; <ay <...<a, and the shortest processing time (SPT) is applied
if the earliest start times are equal

e Step2: Dol =1m
Assign the jobs machine by machine

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 87

e Step 3: j < j+ 1, if j > n, Goto step b
Else select a job and assign job j to machine %
according to EDD and break tie by SPT
e Step 4: If max {Cj(S5),a; — p;} + p;j < d;j Then assign job j on machine
1 Goto Step 3
Else Job j is retained to be scheduled on next machine
Goto step 3
e Step 5: If I < m goto step 2
e Step 6: Then append the jobs tardy to any of the m machines and stop.

Second Greedy Heuristic for Mazimizing the Number of On-Time Jobs (PO2)

e Step 1: Arrange all the jobs in ascending orders of their completion times
e Step2: Dol =1,m
Assign the jobs machine by machine
e Step 3: j«+ j+1,if j > n, Goto step 5
Else select a job and assign job j to machine ¢
In ascending order of the E; and break tie by SPT
e Step 4: If max {Cjx(S),a; — p;} + p;j < d;j Then assign job j on machine
1 Goto Step 3
Else
Job j is retained to be scheduled on next machine Goto step 3
e Step 5: If I < m goto step 2
e Step 6: Then append the jobs tardy to any of the m machines and stop.

Running Time: Step 1 is done in O(nlogn) time, steps 2, 3 and 4 are done
in at most O(nm) time. Therefore, the overall time complexity of each if the
heuristic is at most O(nm + 1logn).

4.2. Computational Studies for Maximizing Number of On-Time Jobs
on Parallel. Problem Generation

A simulation experiment is employed to test the efficiency of the proposed heuris-
tics. The number of machines (m) is set at five levels : 2, 5, 10, 15 and 20. For
each j, an integer processing time p; is randomly generated in [1,99]. In this case,
all the jobs have equal weights. Two parameters k1 and ko are used, and selected
from the set {1,5,10,20}. Due to the fact that we want the data to depend on
the number of jobs n, the integers earliest start times a; are randomly generated
in the interval [0, n/mk;] and the integer latest due dates d; are randomly gener-
ated in the interval [a; + p;, aj + pj +n/mksy]. For each combination of n, k; and
ko, 10 instance are generated, i.e., for each value of n, 160. The heuristics are
implemented in Fortran on a Pentium 233 MHz processor with a 32 MB memory

Computational Results

88 Adamu M.O. and Abass O.

The overall results of the 4,000 test problems are summarized in Table 2
while figures 11-20 show the performances of the heuristics. The values in Ta-
ble 2 represent the average number of on-time jobs. Figures 11-15 reveal the
performances of the heuristics on different numbers of machines at 5 levels of
N = 500,1,000,1,500,2,000 and 2,500. Also, figures 16-20 show the perfor-
mances of the heuristics at different levels of n on m identical machines (where
m = 2,5,10,15 and 20).

It is interesting to note that heuristic PO1 performs better in all cases con-
sidered than PO2 as a result of having higher number of on-time jobs. It is also
observed that heuristic PO1 improves over heuristic PO2 as the number of jobs
and number of machines increase.

The average timing for both algorithms is very similar and is less than a second.

We proceed to give the constant factor approximation for our algorithms with
guaranteed performance (approximation factor or worst case). We say that an
algorithm has a worst-case factor for a maximization problem if the weight of its
solution is at least %. OPT, where OPT is the weight of an optimal solution.

(Note that we defined the worst case factor so that it would always be at least

1.)

Let the job system be n jobs J = (Ji, ..., J,) and m machines M = (M, ..., My,).

Each job J; is characterized by the triplet (aj,d;, p;). The interpretation is that
job J; can be ready from time a;, the earliest start time, not later than d;, the

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES...

Table.2 : Results for Maximizing the number of on-time jobs on identical

parallel machines

Number of Jobs | Heuristics Number of Machines
2 5 10 15 20
500 PO1 184 39 |58.8169.8|81.4
PO2 14.6 | 34.6 | 52.4 | 62.6 | 71.6
PO1 5.1 [12.3]24.7|35.9|46.9
1000 PO2 4 11.2 | 20.1 | 30.7 | 38.4
PO1 6.6 | 16.4 | 30.6 | 44.2 | 57
1500 PO2 54 | 14 26 |35.4|42.6
PO1 10 | 24.2 | 43.4 | 56.8 | 66.8
2000 PO2 7.6 16.8|31.41]39.6|42.8
PO1 10 [24.4|44.4|57.8 | 67.8
2500 PO2 7.8 116.6 | 31.8 | 40 |43.2
Perfomanices of Hewristicz at N=1000
i
£ a ds__g:':_:::— PO
520 e —= P02
2 T T T T
2] i i5 20
Hum bzrof Machines
Figure 11: Performances of Heuristics at N=500
Performances of Heuristics at H={1004
L]
"—E‘ 40 — e PO
5 20 1 —m— P02

Mum ber of Machines

Figure 12: Performances of Heuristics at N=1000

89

90

Adamu M.O. and Abass O.

Permormances of Heuristics at N=1500

a0
%"-m —e—F Ot
g 20 4 —=_F0Z
:' 1 T T T

Number of Mac hines

Figure 13: Performances of Heuristics at N=1500

Performances of Hewristics at N=2000

= 100
B 50 e —Fo
a W —m P02
0 T T T T
2 Ee 10 15 20
Fumbe r of Ma chines

Figure 14 : Performances of Heuristics at N=2000

Perfo mances of Heuristic s at N=2500

=1 POA
= ——
= 5

= —a— PO
n-:]' T T T T 1

2 5 10 15 2
Humber of Machines

Figure 15: Performances of Heuristics at N=2500

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 91

Performances of Heuristics on 2
Identical Machines

% . —— P
Ryt | |__ oo

2500

T (N
[[==] =)

Parmaty

DO 1000 1500 2000
Number of Jobs

Figure 16: Performances of Heuristics on 2 Machines

Performances of Heuristics on 5
ldentical Machines

—e— 1
—a— POz

500 1000 18500 2000
Humber of Jobs

Peraty
o
=)

2500

Figure 17: Performances of Heuristics on 5 Machines

Performances of H euristics on 10
Identical Machines

100
_ . —+— PO
—=— POZ

200 1000 1&00 2000 2500
Humber of Jobs

Penalty
on
=)

Figure 18: Performances of Heuristics on 10 Machines

92 Adamu M.O. and Abass O.

Performances of Heuristics on 15
Identical Machines

100

50 —""E'El_-——f‘:'—
0 —e— P01

Penalty
T

—a— P2

300 1000 1500 2000 2500

Humb er of Jobs

Figure 19: Performances of Heuristics on 15 Machines

Performances of Heuristics on 20
Identical Machines

100
%‘ o B o — —+— FO1
P —=PO2
e g : : :

500 1000 1500 2000 2500

Number of Jobs

Figure 20 : Performances of Heuristics on 20 Machines

latest due date, its processing time on any of the machine is p;. In these heuristics,

PO1 and PO2, our goal is to maximize the number (cardinality) of the set of

scheduled jobs. The analysis of the heuristic PO2 is similar to the one described

(m+1)™—mm
(m+1)m

of the numerical analysis heuristic PO1 cannot perform worst than the worst-case

of heuristic PO2.

and from the results

by [6] where the worst-case factor isp(m) =

5. MAXIMIZING THE NUMBER OF ON-TIME AGREEABLE JOBS WITH EQUAL
PROCESSING TIME.

In this section, we present an efficient O(nlogn) solution algorithm for the
problem of maximizing the number of on-time agreeable jobs with equal pro-
cessing time, i.e. minimizing the number of early and tardy agreeable jobs with
equal processing time (Pm|p; = p|)Y_ > ;). We consider the problem when the
earliest due dates and the latest due dates are agreeable, that is, the earliest due
dates must increase in the same sequence as the latest due dates. We present an
optimal polynomial time algorithm for this problem below

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 93

5.1. Heuristic for Maximizing the Number of On-Time Agreeable Jobs
with Equal Processing Time (POP).

e Step 1: Arrange the jobs in ascending orders of their earliest due date.
a1 <ag <...<ay
e Step 2: j+ j+1,if j > n , Goto step 4
Else select the machine with the smallest completion time and assign a
job to it according to EDD order
e Step 3: If max {Cj,—i(S), ajpj}+p; < dj Then C;(S) <~ max {Cy,—1(5), ajp; }+
pj. Goto step 2 Else
Let job j be moved to @ (tardy job) . Goto step 2.
e Step 4: Then append the jobs in) to any of the m machines and stop.

Running Time: Step 1 is done in O(logn) time. Step 2 and 3 are done at most
O(n) time. The overall complexity of this heuristic is O(nlogn).

Algorithm POP will always produce an optional Solution of this problem con-
sidered. It is observed that the two sorting procedure used in section 4 will
amount to the same thing due to the equal processing time (i.e. sorting accord-
ing to EDD and ascending order of E; will give the same result) The proof of
optimality of POP is presented below:

Proposition 5.1 Algorithm POP produces an optimal schedule.

Proof

Let the first m jobs be scheduled on-time on the M identical parallel machines.
Let H denote the set of on-time jobs. We prove by showing that removal of
any given job from the set H enables a maximum of one alternative job to be
included in H. Assume the next job j cannot be scheduled on-time on any of
the M machines. Excluding any job i from any of the first M jobs from H,
and replacing it with job j (to be completed on time on the same machine is
feasible). Since the due dates of the jobs are agreeable, then a; < aj, d; < d;
and p; = pj, this implies that C; < ;. This increases the completion time of job
7 on the machine. From this, it is clear that set H cannot be expanded by this
replacement. Therefore, Algorithm POP indeed gives an optional solution.

6. CONCLUSION

The parallel machine heuristics that have been developed or outlined in this
paper have practical relevance not only in scheduling machines on a detailed,
day to day basis. At least two important and interesting practical applications
for these heuristics can be proposed. The ability to compare schedule perfor-
mance with different number of identical parallel machines with consideration
of the jobs meeting their time window provides a critical tool in strategic plan-
ning decisions involving the purchase or allocation of equipment in high variety,
medium-volume manufacturing. Using Pm|p; = p|>_ > wjxij, Pm|| Y>> x;j or
Pm|p; = p|)_ > xi; scheduling models as a basis, engineering managers may

94 Adamu M.O. and Abass O.

compare average waiting times, approximate inventory levels, make spans and
hence production capacities for differing number of machines operating in paral-
lel and for a wide range of product assignments. Informed decisions can then be
made based on quantitative comparisons of the costs and benefits associated with
each possible configuration. The problem of scheduling to maximize the weighted
number of on-time job where the jobs have equal processing times was considered.
The time complexity for the greedy heuristics is O(nlogn). It was revealed that
algorithm DOP performs slightly well than algorithm WOP. It has been shown
by computational study and worst-case analysis given by [6] that the algorithms
presented with time complexity O(n™*!logn) will give results very close to their
optimal solutions for the problem to maximize the number of on-time jobs. An
optimal solution greedy heuristic is provided for solving the problem of maxi-
mizing the number of on-time agreeable jobs with equal processing time. The
running (complexity) time is given as O(nlogn) and a proof for feasibility of the
algorithm is also presented. Further research should seek to improve on these
results by using meta-heuristic methods, find exact solutions for small samples
where possible, evolve approximation and pseudo-polynomial algorithms.

=

(10]

(11]
(12]
(13]
(14]

(15]

[16]

(17]

JUST-IN-TIME SCHEDULING PROBLEMS ON IDENTICAL PARALLEL MACHINES... 95

REFERENCES

Adamu, M.O. and Adewunmi, A. (2013), Minimizing the Weighted Number of Tardy Jobs
on Multiple Machines: A Review, Asian Pacific Journal of Operations Research. Submitted
for publication.

Adamu, M.O. and Adewunmi, A. (2014), A Survey of Single machine Scheduling to Mini-
mize Weighted Number of Tardy Jobs, Journal of Industrial and Management Optimization.
10(3) 219-241.

Baker, K.S. and Scudder, G.D. (1990), Sequencing with Earliness and Tardiness Penalties: A
Review. Operations Research, 38, 22-36.

Baptiste,P.;Jouglet,A.; Le Pape.C. and Wim,N.(2004) A Constraint-Based Approach to
Minimize the Weighted Number of Late jobs on Parallel Machine. Technical Report, UTC.
Chen, Z.-L. and Lee, C.Y.(2002), Parallel Machine Scheduling with a Common Due Window
. European Journal of Operational Research,136, 512-527

Bar-noy,A.;Guha,S.;Naor,J. and Schieber,B.(2001) Approximating the Throughput of Mul-
tiple Machines in Real-Time Scheduling. STAM Journal of Computing,31(2), 331-352.
Cheng,T.C.E. and Chen,Z.-L.(1994), Parallel Machine Scheduling Problems with Earliness
and Tardiness Penalties. Journal of the Operational Research Society; 45, 685-695.
Federgruen, A., Mosheiov, G., (1996), Heuristics for Multi-Machine Scheduling Problems
with Earliness and Tardiness Costs. Management Science, 42, 1544-1556.

Federgruen, A., Mosheiov, G., (1997), Heuristics for Multi-Machine Min-Max Scheduling
Problems with General Earliness and Tardiness Costs. Management Science, 42, 1544-1556.
Hiraishi, K., Levner, E. and Vlacti, M. (2002), Scheduling of Parallel Identical Machines to
Minimize the weighted Number of Just-In-Time Jobs. Computers and Operations Research,
29, 841-848.

Kramer, F.-J., Lee, C.-Y. (1994), Due Window Scheduling for Parallel Machines. Mathe-
matical and Computer Modeling, 20, 69-89.

Lann, A. and Mosheiov, G. (1996), Single Machine Scheduling to Minimize the Number of
Early and Tardy Jobs. Computers and Operations Research, 30(8), 769-781.

Lann, A. and Mosheiov, G. (2003), A Note on the Maximum Number of On-Time Jobs On
Parallel Identical Machines. Computers and Operations Research, 30, 1745-1749.

Li, C.-L., Cheng, T.C.E., (1994),The Parallel Machine Min-Max Weighted Absolute Late-
ness Scheduling Problem. Naval Research Logistics 41, 33-46.

Li, C.-L., Cheng, T.C.E. and Chen, Z.-1.(1995), Single Machine Scheduling to Minimize
the Weighted Number of Early and Tardy Agreeable Jobs. Computers and Operations
Research; 22(2), 205 -219.

Rym MHallah and Bulfin, R.L.(2005) Minimizing the Weighted Number Tardy Jobs on
Parallel Processors. European Journal of Operational Research,160(2), 471-484.

Yeung, W.K., Oguz, C. and Cheng, T.C.E.(2001), Minimizing Weighted Number of Early
and Tardy Jobs with a Common due Window Involving Location Penalty. Annals of Oper-
ations Research; 108: 33-54.

