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Crank-Nicolson Galerkin Error Estimates for Linear Stochastic Wave
Equation driven by Space-Time White Noise

Ignatius N. NJOSEH

Abstract

We considered the linear stochastic wave equation driven

by space-time white noise. The Galerkin finite element

method was used to derive the approximate solution. For

the time discretization, we applied the Crank-Nicolson

finite difference approximation scheme and the error esti-

mates were proved both in the L2 and maximum norms.

1. Introduction

We study the Crank-Nicolson Galerkin approximation of linear stochastic wave
equation driven by space-time white noise

(1)
utt − δu = dW in Ω× [0, T ]

u(., t) = 0 on ∂Ω
u(0, .) = x0, u(0, .) = x1 in Ω× [0, T ]

where Ω is a bounded domain in Rd; d ≤ 3, with smooth boundary ∂Ω. −∆ = A
denote the Laplacian. A is self-adjoint, positive definite linear elliptic operator
of second order with smooth coefficients. {W (t)}t≥0 is an L2(Ω)-valued Wiener

process defined on a filtered probability space
(

Ω, F, P, {Ft}t≥0

)
with respect to

the normal filtration {Ft}t≥0.
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The properties of Stochastic Partial Differential Equations (SPDEs) have been
thoroughly studied in [1], [2], [3] and the references therein. Numerical approx-
imations of stochastic wave equation have not received enough attention until
recently; see [4], [5], [6], [7], [8], [9] for existing results on finite element approxi-
mations where the backward Euler time step was applied in the time discretiza-
tion. For more recent literature on Crank-Nicolson approximation and Numerical
Solutions of Stochastic Wave Equation, see the works of [15], [16], [17], [18] and
the references therein.
In this study, we shall be extending the works of [10], [11], [12] and [13] by ap-
plying the Crank-Nicolson time stepping technique to the time discretization of
the linear wave equation. We shall assume that Ω is a bounded convex polyg-
onal domain with ∂Ω smooth. The outline of the remaining part of this paper
is as follows: In section 2, we present some preliminaries on the meaning of the
Wiener process and other theoretical framework within which we shall derive our
error estimates. The finite element analysis for the given problem is in section
3 and in section 4, we derive strong convergence estimates for the finite element
approximations of the given problem (1) in the L2-norm while the error estimates
in the maximum norm will be derived in section 5.

2. Preliminaries

We now present definitions and notations that will be used throughout this
work. Let H = L2(Ω) with inner product (u, v) =

∫
Ω uvdx and corresponding

norm ‖.‖ = (., .)
1
2 .

Let −∆ = A with domain D(A) = H1
0 ∩H2 where the spaces H2 and H1

0 are as
defined below.

Hs = {v ∈ L2 : Dαv ∈ L2, |α| ≤ s}
and

H1
0 =

{
v ∈ H1 : Dαv = 0, on Γ = ∂Ω

}
The space Hs has the inner product (See [12])

(v, w)s =
∑
|α|≤s

∫
Ω
DαvDαwdx

and a corresponding norm ‖v‖s = (v, v)
1/2
s .

Define the space Hs = Hs(Ω) = D(A
s
2 ) with norm |v|s =

∥∥∥A s
2 v
∥∥∥ for any s ∈ R.

Hence from Parseval’s relation,

|v|2s =
∥∥∥A s

2 v
∥∥∥2

=

∞∑
j=1

λ2
j v̂

2
j
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where λj are eigenvalues of A and v̂j = (v, φj) with φj an orthornomal basis of
corresponding eigenfunctions.
For any Hilbert space, H, we define

L2(Ω, H) =

{
v : E ‖v‖2H =

∫
Ω
‖v(w)‖2H dP (w) <∞

}

with norm ‖v‖L2(Ω,H) =
(
E ‖v‖2H

)1/2

Let HS denote the space of Hilbert Schmidt operators from H to H, i.e.

HS =

ψ ∈ L(H) :
∞∑
j=1

‖ψφj‖2 <∞


with norm

‖ψ‖HS =

 ∞∑
j=1

‖ψφj‖2
1/2

where L2 = H and {φj} is an arbitrary orthonormal basis for H. Let E denote

expectation and ψ(s) ∈ HS, then
∫ t

0 ψ(s)dW (s) can be define to have the Ito
Isometry

E

∥∥∥∥∫ t

0
ψ(s)dW (s)

∥∥∥∥2

=

∫ t

0
‖Eψ(s)‖2HS ds

We assume that W (t) is a Wiener process with covariance operator Q. This
process may be considered in terms of its Fourier series. Suppose that Q has
eigenvalues γi > 0 and corresponding eigenfunctions ξi. Then

(2) W (t) =
∞∑
j=1

γ
1
2
i ξiβi(t)

where βi, i = 1, 2, . . . is a sequence of real-valued independence identically dis-
tributed Brownian motions and {(γi, ξi)}∞i=1 are eigenpairs of Q with orthonormal
eigenvectors. The series in (2) converges in L2(Ω, H), since for t ≥ 0,

‖W (t)‖2L2(Ω,H) = E

∥∥∥∥∥∥
∞∑
j=1

γ
1
2
i ξiβi(t)

∥∥∥∥∥∥
2

H

 =

∞∑
j=1

γiE(βi(t)) = t

∞∑
j=1

γi = tT r(Q) <∞

For more on these definitions, see [12], [13] and [14].
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3. Finite Element Analysis

First we formulate equation (1) as a first order system in time by setting
A = −∆,

(3) y =

[
u
ut

]
and B =

[
0 −I
A 0

]
where the functions lie in the domain D(A) = H1

0 ∩H2, and thus the components
of those in D(B) vanishes on ∂Ω. We then have

(4)
yt +By = dW, t > 0
y(0) = y0 = (x0, x1)T

which has a unique solution

y(t) = e−tBy0 for any y0 ∈ L2 × L2

with E(t) = e−tB

3.1. Galerkin Discretization. Let Sh be a family of finite elements spaces,
which consists of continuous piecewise linear finite elements that vanish on the
boundary with respect to the triangulation Th of Ωh ⊂ Ω with boundary nodes
of h on Ωh on ∂Ω. We also have that {Sh} ⊂ H1

0 . Then the semidiscrete problem
is to find uh(t) ∈ Sh, such that,

(5) uh,tt +Ahuh = PhdW, t > 0, uh(0) = x0h, ut(0) = x1h

and (4) becomes

(6) yh,t +Bhyh = PhdW, t > 0, yh(0) = y0h = (x0h, x1h)T

For the fully discrete scheme, let r(z) be a rational function approximating e−z

to order p, i.e., such that (for more on rational function approximation, see [13])

(7) r(z) = e−z +O(zp+1), for z → 0, where p ≥ 1

and which is A-stable, so that

(8) |r(z)| ≤ 1, for Re(z) ≥ 0

We define an approximation Yn = (Un, Vn)T to the solution of (1) at time tn = nk;
where k is the time step, by

(9) Yn = r(kBh)Yn−1, for n ≥ 1 with Y0 = y0h = (x0h, x1h)T

Applying the Crank-Nicolson approximations which corresponds to the rational
function r(z) =

(
1− 1

2z
) (

1 + 1
2z
)

gives(
1 +

1

2
kBh

)
Yn =

(
1− 1

2
kBh

)
Yn−1, for n ≥ 1 with Y0 = y0h = (x0h, x1h)T
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This is written as(
1 +

1

4
k2Ah

)
Vn =

(
1 +

1

4
k2Ah

)
Vn−1 − kAhUn−1 +

1

2

∫ tn

tn−1

PhdW (s),

Un = Un−1 +
1

2
k(Vn + Vn+1), for n ≥ 1 with U0 = x0h, V0 = x1h

when express in terms of the components of Yn = (Un, Vn)T .

Eliminating Vn we find that, with ∂̄Un = (Un − Un−1)/2k and Ûn = 1
2(Un +

2Un−1 + Un−2),

(10) (∂̄Un, χ) +A(Ûn, χ) = Ph∆Ŵ , ∀ χ ∈ Vh, n ≥ 2

U0 = x0h, ∂̄U1 =
1

2
x1h +

1

2

(
1 +

1

2
k2Ah

)−1
(
x1h − kAhx0h +

∫ tn

tn−1

PhdW (s)

)

4. Convergence results

We let Ph : L2 →→ Vh and Rh : H1
0 → Vh as L2 and Ritz projections re-

spectively, then ‖Phv‖ ≤ C ‖v‖ and ‖Rhv‖ ≤ C ‖v‖ and by the standard finite
element analysis

(11) ‖Phv − v‖ ≤ Chβ ‖v‖β for v ∈ Hβ ∩H1
0

and

(12) ‖Rhv − v‖ ≤ Chβ ‖v‖β for v ∈ Hβ ∩H1
0

To present our error estimate, we need the following results from [6].

Lemma 4.1. Let x0, x1 ∈ Hβ and assume that ‖x0h − x0‖ ≤ Chβ ‖x0‖β and

‖x1h − x1‖ ≤ Chβ ‖x1‖β Then there is a constant C such that

‖uh(t)− u(t)‖+ ‖uh,t(t)− ut(t)‖ ≤ Chβ
(
|x0|β + |x1|β +

∥∥∥A−(1−β)/2
∥∥∥
L2

)
and

‖xh(t)− x(t)‖ ≤ Chβ
(
|x0|β×β +

∥∥∥A−(1−β)/2
∥∥∥
L2×L2

)
Lemma 4.2. Let Eh(t) = e−tAk be the analytic semigroup generated by Ah. Let
Fh(t) = Eh(t)Ph − E(t) .
Then

‖Fh(t)‖L∞([0,T ],H) ≤ Ch
β|v|β, for v ∈ Hβ, 0 ≤ β ≤ 1

and

‖Fh(t)‖L2([0,T ],H) ≤ Ch
β|v|β−1, for v ∈ Hβ−1, 0 ≤ β ≤ 2
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Theorem 4.1. Assume that r(λ) satisfies (7) and (8). Let x0, x1 ∈ Hs, s =
max(β, p), and assume that ‖x0h − x0‖ ≤ Chβ ‖x0‖β and ‖x1h − x1‖ ≤ Chβ ‖x1‖β.

Then for the solution of (1) and (10) we have
(13)

‖Un − u(tn)‖+ ‖V n − ut(tn)‖ ≤Chβ
(
|x0|β + |x1|β +

∥∥∥A−(1−β)/2
∥∥∥
L2

)
+ Ckp

(
|x0|p + |x1|p +

∥∥∥A−(1−p)/2
∥∥∥
L2

)
, tn ≥ 0

This is equivalent to
(14)

‖Xn − x(t)‖ ≤ Chβ
(
|x0|β +

∥∥∥A−(1−β)/2
∥∥∥
L2

)
+ Ckp

(
|x0|p +

∥∥∥A−(1−p)/2
∥∥∥
L2

)
Proof: We have

‖Xn − x(t)‖ ≤ ‖Xn − xh(tn)‖+ ‖xh(tn)− x(t)‖

By Lemma (4.1)

‖xh(t)− x(t)‖ ≤ Chβ
(
|x0|β×β +

∥∥∥A−(1−β)/2
∥∥∥
L2×L2

)
Hence we need to estimate

Xn − xh(tn) =
[
r(kBh)nx0h + r(kBh)nx0hPh∆Ŵ (t)− e−(tnBh)x0h

]
=
[
r(kBh)nx0h − e−(tnBh)x0h + r(kBh)nx0hPh∆Ŵ (t)

]
We assume x0h = Phx0, where Ph is also the orthogonal projection of L2 × L2

onto Vh × Vh and if we let

Fn = Fn(kBh) = r(kBh)n − e−(tnBh)

such that

‖Xn − xh(tn)‖ ≤ ‖Fn(kBh)Phx0‖+
∥∥∥r(kBh)nPh∆Ŵ (t)

∥∥∥ ≡ ‖I‖+ ‖II‖

The bounds for (I) we will get from Lemma 4.1 and Lemma 4.2

‖I‖ = ‖Fn(kBh)Phx0‖ ≤ Chβ (|x0|β + |x1|β)
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Also from Lemma 4.1, 4.2, Ito isometry and Paserval’s relation, we obtain

‖II‖ =
∥∥∥r(kBh)nPh∆Ŵ (t)

∥∥∥ =

∥∥∥∥∥r(kBh)n
∫ tn

tn−1

PhdW (s)

∥∥∥∥∥
≤ C

∥∥∥∥∥
∫ tn

tn−1

PhdW (s)

∥∥∥∥∥
= C

∥∥∥∥∥∥Ph
∞∑
j=1

γ
1/2
j (βj(tn)− βj(tn−1)) ξj

∥∥∥∥∥∥
≤ Chβ

∥∥∥A−(1−β)/2
∥∥∥2

L2

+ Ckp
∥∥∥A−(1−p)/2

∥∥∥2

L2

This completes the proof.

5. Maximum-norm error estimates

5.1. Resolvent Estimates: Here we consider A as a densely defined operator
in the Banach space C0(Ω) of continuous functions in Ω̄ vanishing on ∂Ω, with
norm

(15) ‖v‖ = max
x∈Ω
|v(x)|

and throughout this work, when the space is not specified as a subscript, the
norm denotes the maximum-norm (15). The spectrum σ(A) of A is located in a
segment {λ : λ ≥ C0 > 0} of the positive real axis, with C0 the smallest eigenvalue
of A. The following is then a special case of a result shown by [14].

Lemma 5.1. For any ε > 0 there is a constant C = C0 such that

(16)
∥∥(zI −A)−1

∥∥ ≤ C(1 + |z|)−1, for z /∈
∑
ε

= {z : arg z} < ε

We require also the following results from [13] which we shall use in the proof
of our main result here.

Lemma 5.2. Assume that A satisfies the resolvent estimate (16), and let B be
the operator on X ×X defined by[

0 −I
A 0

]
Then there exists θ ∈ (0, π2 ) such that∥∥(zI −B)−1

∥∥ ≤ C(1 + |z|)−1, for z /∈
∑
θ

= {z : arg z} < ε

For the semidiscrete schemes Njoseh and Ayoola in [6] proved the following
result which we shall apply in the proof of our main result.
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Lemma 5.3. With y0h = (Rhx0, Rhx1)T we have for the solutions of (1) and (5)

‖uh(t)− u(t)‖+‖uh,t(t)− ut(t)‖ ≤ Ch2lh (||Ax0||β + ||Ax1||β)+Chβ
∥∥∥A−(1−β)/2

∥∥∥
L2

,

0 ≤ β ≤ 1, t > 0

Using the notations for the semidiscrete problem

(17) ỹh(t) :=

[
I 0
0 A−1

h

]
yh(t) = Fhyh(t) =

[
uh(t)

A−1
h uh,t(t)

]
where

B̃h =

[
0 −Ah
−I 0

]
we have a result which yields an error estimate for uh(t) of the same order as
Lemma 5.3 above under weaker regularity assumptions on x1.

Lemma 5.4. With y0h = (Rhx0, Rhx1)T we have for the solutions of (1) and (5)

‖uh(t)− u(t)‖ ≤ Ch2lh (||Ax0||β + ||Ax1||β) + Chβ
∥∥∥A−(1−β)/2

∥∥∥
L2

, t > 0

5.2. Convergence Result: First let us state these important results from [13].

Lemma 5.5. Let −B generate an analytic semigroup E(t) = e−tB in a Banach
Space X with norm ‖.‖, then

(18) ‖r(kB)nv‖ ≤ C ‖v‖
and

(19)
∥∥(r(kB)n − e−tnB

)
v
∥∥ ≤ Ckp ‖Bpv‖ , for v ∈ D(Bp), n ≥ 0

Lemma 5.6. If we define Ph : L2 → Vh and Rh : H1
0 → Vh as L2 and Ritz

projections respectively, then we have

‖Phv − v‖ ≤ Ch2lh ‖Av‖ , for v ∈ C2(Ω̄) ∩H1
0 (Ω)

and
‖Rhv − v‖ ≤ Ch2lh ‖Av‖ , for v ∈ C2(Ω̄) ∩H1

0 (Ω)

The error estimate in the maximum norm for the fully discrete scheme is

Theorem 5.1. For y0h = (Phx0, Phx1)T we have for the solutions of (1) and (10)
(20)

‖Un − u(tn)‖+ ‖Vn − ut(tn)‖ ≤ Ch2l2h

(
‖Ax0‖+ ‖Ax1‖+

∥∥∥A−(1−β)/2
∥∥∥)

+ Ck2l2h

(∥∥A2x0

∥∥+
∥∥A2x1

∥∥+
∥∥∥A−(1−β)/2

∥∥∥) , 0 ≤ β ≤ 1, tn > 0

and
(21)

‖Un − u(tn)‖ ≤ C(h2l2h+k2)
(
‖Ax0‖+ ‖Ax1‖+

∥∥∥A−(1−β)/2
∥∥∥) , 0 ≤ β ≤ 1, tn > 0
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Proof:
Using Parsevals relation and Ito isometry, we have∥∥∥Ph∆Ŵ (s)

∥∥∥ ≤ Ch2
∥∥∥A−(1−β)/2

∥∥∥
By lemma 5.5,

‖Yn − yh(tn)‖ =
∥∥∥r(kBh)nyh0 + Ph∆Ŵ (s)− e−nkBhyh0

∥∥∥
=
∥∥∥(r(kBh)n − e−nkBh

)
yh0 + Ph∆Ŵ (s)

∥∥∥
≤ Ck2

(
‖Bhyh0‖+

∥∥∥A−(1−β)/2
∥∥∥)

Next we show that

‖BhRhy0‖ ≤ Cl2
(∥∥A2x0

∥∥+
∥∥A2x1

∥∥)
With Ah as defined earlier, we have AhRhv = PhAv. Hence

BhRhy0 =

(
−PhAx0

AhPhAx0 − PhAx1

)
To estimate the norm of AhPhAx0 = (AhPhA−AhRhA)x0 +AhRhAx0, we note
that the last term equals PhA

2x0. Using the global uniformity of the triangula-
tion, i.e.,

‖Ahφ‖ ≤ Ch−2 ‖φ‖ , for φ ∈ Sh
and Lemma 5.6, we have

‖Ah(Ph −Rh)Ax0‖ ≤ Ch−2 ‖(Ph −Rh)Ax0‖ ≤ Cl−2
h

∥∥A2x0

∥∥
Hence,

‖AhPhAx0‖ ≤ Cl2h
∥∥A2x0

∥∥
Since ‖PhAx0‖ ≤ C ‖Ax0‖ ≤ C

∥∥A2x0

∥∥, and similar argument for terms in x1.
This proves (20).
For the prove (21), by Lemma 5.5,∥∥∥Ỹn − ỹh(tn)

∥∥∥ ≤ Ck2
(∥∥∥B̃2

H ỹ0h

∥∥∥+
∥∥∥A−(1−β)/2

∥∥∥)
and using the notations of (17), we have

B̃2
H ỹ0h =

(
0 −Ah
I 0

)(
0 −1
1 0

)(
Rhx0

Rhx1

)(
−PhAx0

AhPhAx0 −Rhx1

)
and

‖Rhx1‖ ≤ ‖x1‖+ Ch2l2h ‖Ax1‖ ≤ C ‖Ax1‖
we have ∥∥∥B̃2

H ỹ0h

∥∥∥ = Ch2l2h (‖Ax0‖+ ‖Ax1‖)
This concludes the proof of the theorem.
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