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Crank-Nicolson Galerkin Error Estimates for Linear Stochastic Wave
Equation driven by Space-Time White Noise

IeNnaTIUS N. NJOSEH

ABSTRACT

We considered the linear stochastic wave equation driven
by space-time white noise. The Galerkin finite element
method was used to derive the approximate solution. For
the time discretization, we applied the Crank-Nicolson
finite difference approximation scheme and the error esti-
mates were proved both in the L, and maximum norms.

1. INTRODUCTION

We study the Crank-Nicolson Galerkin approximation of linear stochastic wave
equation driven by space-time white noise

Ut —du =dW in Q x [O,T]
(1) u(.,t) =0 on 9N
u(0,.) = zg, u(0,.) == in Q x [0,7T

where Q is a bounded domain in R?; d < 3, with smooth boundary Q. —A = A
denote the Laplacian. A is self-adjoint, positive definite linear elliptic operator
of second order with smooth coefficients. {W(t)},5, is an L(f2)-valued Wiener

process defined on a filtered probability space (Q, F, P, {Ft}tzo) with respect to
the normal filtration {F;};.
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The properties of Stochastic Partial Differential Equations (SPDEs) have been

thoroughly studied in [1], [2], [3] and the references therein. Numerical approx-
imations of stochastic wave equation have not received enough attention until
recently; see [4], [5], [6], [7], [8], [9] for existing results on finite element approxi-
mations where the backward Euler time step was applied in the time discretiza-
tion. For more recent literature on Crank-Nicolson approximation and Numerical
Solutions of Stochastic Wave Equation, see the works of [15], [16], [17], [18] and
the references therein.
In this study, we shall be extending the works of [10], [11], [12] and [13] by ap-
plying the Crank-Nicolson time stepping technique to the time discretization of
the linear wave equation. We shall assume that {2 is a bounded convex polyg-
onal domain with 92 smooth. The outline of the remaining part of this paper
is as follows: In section 2, we present some preliminaries on the meaning of the
Wiener process and other theoretical framework within which we shall derive our
error estimates. The finite element analysis for the given problem is in section
3 and in section 4, we derive strong convergence estimates for the finite element
approximations of the given problem (1) in the Lo-norm while the error estimates
in the maximum norm will be derived in section 5.

2. PRELIMINARIES

We now present definitions and notations that will be used throughout this
work. Let H = Ly(f2) with inner product (u,v) = [,uvdz and corresponding

1

norm .|| = (.,.)z.
Let —A = A with domain D(A) = Hi N H? where the spaces H? and H} are as
defined below.

H° ={v € Ly: D% € Lo, |o] < s}

and

H(%:{’UEHl : D% =0, on I' = 90}
The space H® has the inner product (See [12])

(v,w)s = Z / D*vD%wdx
|| <s Q

and a corresponding norm ||v||, = (v,v);m.
Define the space H® = H*(Q) = D(A?) with norm |v|, = HAgvH for any s € R.
Hence from Parseval’s relation,

2 X
S
\v|§ = HAivH = g )\32»1732-
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where \; are eigenvalues of A and v; = (v, ¢;) with ¢; an orthornomal basis of
corresponding eigenfunctions.
For any Hilbert space, H, we define

na(@, 1) = o B ol = [ oty aptw) < oo}

) 9\ 1/2
with norm [[o]l o, = (B 10l )

Let HS denote the space of Hilbert Schmidt operators from H to H, i.e.

HS=q¢ e L(H): Y |vg;l* < o0
j=1
with norm
1/2

6l s = | D a1
Jj=1

where Ly = H and {¢;} is an arbitrary orthonormal basis for H. Let £ denote

expectation and ¥ (s) € HS, then fo s)dW (s) can be define to have the Ito
Isometry

vt s t/wwnmw
We assume that W (t) is a Wiener process with covariance operator (). This
process may be considered in terms of its Fourier series. Suppose that ) has
eigenvalues v; > 0 and corresponding eigenfunctions &;. Then

1
(2) W(t) =Y 2 &bilt)
j=1
where §;, ¢ = 1,2,... is a sequence of real-valued independence identically dis-

tributed Brownlan motions and {(v;, &)}, are eigenpairs of @ with orthonormal
eigenvectors. The series in (2) converges in Lo(2, H), since for ¢ > 0,

2

WO y0m = E | | D2 &s:(0) Z% (Bi(t) —fZ% tTr(Q
j=1

H

For more on these definitions, see [12], [13] and [14].
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3. FINITE ELEMENT ANALYSIS

First we formulate equation (1) as a first order system in time by setting
A=-A,

(3) y:[Z]andB:[El _OI}

where the functions lie in the domain D(A) = H} N H?, and thus the components
of those in D(B) vanishes on 0€2. We then have

@ g+ By =dW, t >0

y(0) = yo = (zo,21)"
which has a unique solution
y(t) = e Byq for any yo € Ly x Ly
with E(t) = e~ B
3.1. Galerkin Discretization. Let S; be a family of finite elements spaces,
which consists of continuous piecewise linear finite elements that vanish on the
boundary with respect to the triangulation 7}, of € C Q2 with boundary nodes

of h on Qy on 9Q. We also have that {S;} C HE. Then the semidiscrete problem
is to find wup(t) € Sp, such that,

(5) Up tt + Apup, = PpdW, t > 0, uh(O) = ZTop, ut(O) = T1p
and (4) becomes
(6) Ynt + Bpyn = PpdW, t > 0, yn(0) = yon = (von, v15)"

For the fully discrete scheme, let r(z) be a rational function approximating e~
to order p, i.e., such that (for more on rational function approximation, see [13])

z

(7) r(z) = e * +0(zP), for z — 0, wherep>1
and which is A-stable, so that
(8) Ir(2)| <1, for Re(z) >0

We define an approximation Y;, = (Uy, V,,)T to the solution of (1) at time t,, = nk;
where k is the time step, by

(9) Yy, = r(kBy)Yn_1, for n > 1 with Yy = yor = (von, 210)"
Applying the Crank-Nicolson approximations which corresponds to the rational

function r(z) = (1 — 32z) (1 + 3z) gives

1 1
<1 + 2]{,‘Bh> Yn = (1 - 2]{}Bh> Ynfl, for n >1 with Yb = Yonh = ($0h,x1h)T
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This is written as

1 1 1 [t
(1 + 4k2Ah> V., = <1 + 4k2Ah) Vi1 — kAL U1 + 2/ Pde(S),

tn—1

1
U,=Up_1+ ik(Vn + Vig1), for n > 1 with Uy = zop, Vo = 211

when express in terms of the components of Y;, = (Uy, V,,)T.
Eliminating Vj, we find that, with 0U, = (U, — U,_1)/2k and U, = 1(U, +
2Un—1 + Un—2)7

(10) (OUn, X) + A(Un, X) = PuAW, ¥ x € Vi, 122
- 1 1 1, \* tn
Uy = zop, OU; = §$1h + 5 1+ ik Ay, T1h — kApxon + PpdW (s)
tn—1

4. CONVERGENCE RESULTS

We let P, : Ly —-— V;, and Ry, : H& — V3, as Lo and Ritz projections re-
spectively, then ||Pyv| < C|v|| and ||Rpv|| < C||v|| and by the standard finite
element analysis

(11) | Pyv —v|| < CHP ||’U”B for v e H? N H}
and
(12) |Rpv — o] < ChP vl 4 for v e HP N Hy

To present our error estimate, we need the following results from [6].

Lemma 4.1. Let zg,z1 € H® and assume that ||zq, — 0| < Ch? Haco||ﬁ and
|21 — 1] < CRP [z1]l5 Then there is a constant C' such that
)

ln(t) — (b)) + lun o(t) — we(t)]) < CHP <|xorﬂ + s + 47077

LQXLQ)

Lemma 4.2. Let Ej(t) = e %4 be the analytic semigroup generated by Aj,. Let
Fy(t) = Ep(t) Py — E(t) .
Then

and
Jont) = (o) < 0 (Jaolaes + 40127

HFh(t)HLOO([QT},H) < Chﬁ|v|g, for v € HB, 0<p<1
and
1FR ()|, 0.7,y < CHP[0lg-1, forve HOH 0< B <2
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Theorem 4.1. Assume that r()\) satisfies (7) and (8). Let xg,x1 € H®, s =
max(3, p), and assume that ||zq, — xo|| < Ch® [zoll g and [lz1p — 21| < Ch? 1]l g-
Then for the solution of (1) and (10) we have

)

(13)
10" = uta)| + V" = wta) | <CH? (|xo|g + oy + [[470-9)

+ COkP (moyp +|z1]p + HA*“*P)/?’ L2> Lty >0
)

This is equivalent to
(14)

1, = 20l < 0 (Jaols + 47

<o e
Lo
Proof: We have

[ X —x(@ < [ X" = zp(ta) | + l[2n(tn) — 2(0)]]

LQXLQ)

X" —ap(tn) = [T(th)%Oh +1(kBp)"op PR AW (t) — 6_(t”Bh)$oh}

By Lemma (4.1)

len(t) — 2(0)]| < CH <\xo|gxﬁ 4o

Hence we need to estimate

= [T(th)nl'oh — 6_(t"Bh).T0h + T(]CBh)n.%ohPhAW(t)}

We assume xgp, = Pnxg, where Py, is also the orthogonal projection of Ly X Lo
onto Vj, x V, and if we let

Fy = Fy(kBy) = 7(kBy)" — e~ (tnBr)
such that
1" = a(t)ll < I1Ba(kBy) Praoll + |r(kBa)" PAAW ()| = 2] + 121
The bounds for () we will get from Lemma 4.1 and Lemma 4.2

Il = ||Fn(kBp) Przoll < C? (|zolg + |1l )
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Also from Lemma 4.1, 4.2, Tto isometry and Paserval’s relation, we obtain

111 = By P @) = |rsm [ mawts

tn—1

tn
<C / PrdW (s)

tn—1

=C||P, Z’Y;/Q (ﬁj(tn) - Bj(tn—l)) gj
j=1

2 2

< ChHP HA—(l—ﬁ)/Q‘

L COKP HA—u—pw‘
2

L Lo

This completes the proof.

5. MAXIMUM-NORM ERROR ESTIMATES

5.1. Resolvent Estimates: Here we consider A as a densely defined operator
in the Banach space Cp(2) of continuous functions in 2 vanishing on 952, with
norm

(15) [0l = max|v(z)|

zeQ
and throughout this work, when the space is not specified as a subscript, the
norm denotes the maximum-norm (15). The spectrum o(A) of A is located in a

segment {\ : A > Cp > 0} of the positive real axis, with Cj the smallest eigenvalue
of A. The following is then a special case of a result shown by [14].

Lemma 5.1. For any € > 0 there is a constant C' = Cj such that
(16) [(zI—A) | <C+z) forz¢ Y ={z:argz} <e

We require also the following results from [13] which we shall use in the proof
of our main result here.

Lemma 5.2. Assume that A satisfies the resolvent estimate (16), and let B be
the operator on X x X defined by

0 —I
A 0
Then there exists 6 € (0, ) such that

(=1 — B)flu <C(1+z))7, for z ¢ Z ={z:argz} <e

For the semidiscrete schemes Njoseh and Ayoola in [6] proved the following
result which we shall apply in the proof of our main result.
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Lemma 5.3. With 3o, = (Rpz0, Rpr1)” we have for the solutions of (1) and (5)
lun(®) = wt) [+ un o (8) = ()]l < CH2n (1 Azols + || Az [[5)+Ch || 4=0=P72]

)

Lo

0<B<1, t>0

Using the notations for the semidiscrete problem

(17) Gn(t) = [ é A(;)f ]yh(ﬂ = Fhyn(t) = [ Aﬁﬁ(t) ]
where 5, - [ _OI _ 64h }

we have a result which yields an error estimate for up(t) of the same order as
Lemma 5.3 above under weaker regularity assumptions on zj.

Lemma 5.4. With yo, = (Rpz0, Rpz1)T we have for the solutions of (1) and (5)

lun(®) = u(®)l] < Ch2%, (|Azol|s + || Azalls) + € [A-0=D72] e >0

Lo
5.2. Convergence Result: First let us state these important results from [13].

Lemma 5.5. Let —B generate an analytic semigroup £(t) = e~ *? in a Banach
Space X with norm ||.||, then

(18) lr(kB)"v[| < Clv]|
and
(19) | (r(kB)™ — e b) v|| < CKP||BPv|, for v e D(BP),n >0

Lemma 5.6. If we define P, : Ly — V}, and Ry, : H& — V3, as Ly and Ritz
projections respectively, then we have

| Pyv — v|| < Ch2ly, || Av]|, for v e C*(Q) N HE(Q)
and B
|Rpv — v|| < Ch2ly, ||Av||, for v e C*(Q) N HL(Q)
The error estimate in the maximum norm for the fully discrete scheme is

Theorem 5.1. For yo, = (P,xo, P,z1)? we have for the solutions of (1) and (10)
(20)
10 = (o)l + [V = uelta)| < CH2E (11 Aol] + Az ]| + | A=0=272|)

+ Ok (|| A% + | A% ]| + [A~0-72])) L0 < B <1, b0 >0
and
(21)
U = u(ta)]] < O3k (| Azl + Az + 4=} 0 < B <1, 8> 0
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Proof:
Using Parsevals relation and Ito isometry, we have

o] <cre -
By lemma 5.5,
¥ = g (ta)ll = |[r(kBR) o + PLAW (5) — & By

= | (rBay = ) g + PaaTI ()|
< Ck? (|| Bunol + [[A=0=772|)

Next we show that

| BuBayoll < CF (|| A%o]| + [ 4% )
With Aj, as defined earlier, we have A, Rpv = P, Av. Hence

. *PhACCO
Brlinyo = ( APy Az — Py Az, )
To estimate the norm of Ay P, Azg = (ApPrA — ApRpA)xo + ApRpAxg, we note
that the last term equals P, A?zy. Using the global uniformity of the triangula-
tion, i.e.,

|Apo|| < Ch™2||g)|, for ¢ € Sy,

and Lemma 5.6, we have
HAh(Ph — Rh)A:L’()H < Ch™2 ||(Ph — Rh)A:L’()H < Cl}:Q HAQIL’()H

Hence,
| APy Az < CIZ || A%

Since ||PyAzg| < C[|Azo|| < C ||A%x0]|, and similar argument for terms in ;.
This proves (20).
For the prove (21), by Lemma 5.5,

< (s +Ja~o-27)

Yo — Gn(tn)

and using the notations of (17), we have
B2 ~ o 0 —Ah 0 —1 Rhl‘o —PhA:EO
HYOh = I 0 1 0 thl AhPhAI‘O - RhCL‘l

[Rhzall < [lo1ll + CR2I | A2y || < C|| Az |

and

we have

| Brion|| = €2 (1l Aol + [ A1)

This concludes the proof of the theorem.
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