
Nigerian Journal of Mathematics and Applications
V olume 23, (2014), 30− 38
c©Nig. J. Math. Appl. http : //www.kwsman.com

A Two Step Lo- Stable Second Derivative Hybrid Block Method for
Solution of Stiff Initial Value Problems

OLUSHEYE AKINFENWA*, ALI AHMED, OSUNKAYODE KABIR

Abstract

We present a two step Lo-stable second derivative hybrid block

method of order eight for the direct solution of stiff Initial

Value Problems (IVPs). The main method and additional

methods are obtained from the same continuous scheme de-

rived using interpolation and collocation technique to form the

block method. The stability properties of the block method

is discussed via a single matrix equation. The methods si-

multaneously integrate the stiff IVPs over non-overlapping

intervals. Numerical results obtained using the proposed

second derivative hybrid block method reveal that it com-

pares favorably well with existing methods in the literature.

1. Introduction

Consider the stiff IVP of the form

(1) y′ = f(t, y), y(t0) = y0 , t ε [a, b]

.
where f satisfies the Lipschitz condition as given in Henrici [17]).

Equation (1) occur in the mathematical formulation of physical situations in
a number of areas particularly in chemical kinetics, control theory, electrical cir-
cuit, robotics, aeronautics etc. Stiffness in most ordinary differential equations
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(ODEs) has posed a lot of computational difficulties in many practical applica-
tion model of ODEs and therefore affects the efficiency of numerical methods.
In the literature, several authors have proposed various methods including hy-
brid method for the solution of (1), see([3], [4], [6], [7],[8], [19]), and their ref-
erences therein. Hybrid method is the modified form of the k-step linear multi-
step method (LMM) obtained by incorporating off-step points in the derivation
process in order to overcome the Dahlquist barrier theorem. Second derivative
methods proposed by Enright ([9],[10]), were shown to be of order up to k+2 and
implemented in a variable order, variable-step mode. In this paper we proposed
a second derivative hybrid method of order 3k + 2 in the form (2)

(2)

k∑
j=0

αjyn+j = h(

k∑
j=0

βjfn+j +

v∑
j=1

βηjfn+ηj ) + h2γkgn+k

where αk = 1 and βk = 0, k = 2 is the step number, βk = 0 and αk =
1 do not vanish, αj , βj , βηjandγk are unknown constants, v = 4 is the num-
ber of off-step points and ηj are rational numbers. Equation (2) is derived
through interpolation and collocation, (see Lie and Norsett [21], Onumanyi et
al. [24],[25],[26] and Gladwell and Sayers [14]). The continuous representation
generates two main discrete hybrid second derivative method and four additional
method which are combined and used as a block method to simultaneously pro-
duce approximations {y 1

4
, y 3

4
, y1, y 5

4
, y 7

4
, y2} for the solution of (1) at a block of

points {t 1
4
, t 3

4
, t1, t 5

4
, t 7

4
, t2} h = tn+1 − tn, n = 0, 2..., N − 2 on a partition [a,

b], where a, bε<, h is the constant step-size, n is a grid index and N > 0 is the
number of steps.

The rest of the paper is presented as follows: In section 2, we discuss the
basic idea behind the algorithm and obtain a continuous representation Y (t) for
the exact solution y(t) which is used to generate members of the block method
for solving (1). In section 3, we present the analysis of our Two step second
derivative hybrid block method. The accuracy of the new method is shown via
some standard problems in section 4. Finally, in section 5 we present some
concluding remarks.

2. Derivation of the method

We derive a continuous representation of the second derivative hybrid method
which is used to generate the main discrete method by seeking an approximation
of the exact solution y(t) by assuming a continuous solution Y (t) of the form

(3) Y (t) =

p+2q−1∑
j=0

bjϕj(t)
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where t ∈ [t0, Tn], bj are unknown coefficients to be determined, ϕj(t) are poly-
nomial basis functions of degree p+2q−1, such that the number of interpolation
points p and the number of distinct collocation points 2q are respectively chosen
to satisfy 1 ≤ p < k and q > 0.

The new proposed method is thus constructed by specifying the following pa-
rameters: ηi = (1/3, 2/3, 4/3, 5/3), i = 1 . . . 4, ϕ(t) = tj , j = 0, 1 . . . p+ 2q− 1, p =
1, q = 4, andk = 2 and assuming that yn+ ı

3
denote numerical solution of the

exact solution y(tn+ ı
3
), fn+ ı

3
= f(tn+ ı

3
), n is the grid index, ı = 0, . . . 6. While

gn + k =
df(tn+k,y(n+k))

dt .
By imposing the following conditions:

(4)

8∑
j=0

bjt
j
n+i = yn+i, i = 1

(5)
8∑
j=0

bjt
j−1

n+ i
3

= fn+ i
3
, i = 0, . . . 6,

(6)

8∑
j=0

bjj(j − 1)tj−2
n+2 = gn+2.

Equations (4), (5), and (6) lead to a system of nine equations which is solved to
obtain the coefficient bj .

The two step continuous second derivative hybrid method is obtained by substi-
tuting these values of bj into (3). After some algebraic computation, our method
yields the expression in the form:

(7) Y (t) = α1(t)yn+1 + h
2∑
j=0

βj(t)fn+j + h
4∑
j=1

βηj (t)fn+ηj + h2γ2(t)gn+2

Where α1(t), βj(t), βηj (t) and γ2(t) are continuous coefficients. Equation (7)
is then used to generate the main discrete second derivative hybrid method (8)
and (9) by evaluating at point t = (tn+2).

(8)

yn+2 = yn+1−
11h

26880
fn+

9h

2240
f
n+1

3
−

369

17920
f
n+2

3
+

563h

3360
fn+1+

3123h

8960
f
n+4

3
+

153

448
f
n+5

3
+

8567h

53760
fn+2−

h2

128
gn+2

And evaluating at points
t = tn, tn+ 1

3
, tn+ 2

3
, tn+ 4

3
, tn+ 5

3
we obtained the additional methods (9),(10), (11),(12)

and (14).
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(9)

yn = yn+1−
527h

5376
fn−

1143h

2240
fn+ 1

3
−

1521

17920
fn+ 2

3
−

1613h

3360
fn+1+

2547h

8960
fn+ 4

3
−

387

2240
fn+ 5

3
+

3319h

53760
fn+2−

h2

128
gn+2

(10)

yn+ 1
3

= yn+1+
187h

68040
fn−

131h

945
fn+ 1

3
−

6659

15120
fn+ 2

3
−

821h

8505
fn+1−

197h

7560
fn+ 4

3
+

4h

189
fn+ 5

3
−

121h

15120
fn+2−

h2

972
gn+2

(11)

yn+ 2
3

= yn+1−
383h

435456
fn+

3263

302400
fn+ 1

3
−

75499

483840
fn+ 2

3
−

62941h

272160
fn+1+

15713h

241920
fn+ 4

3
−

1873

60480
fn+ 5

3
+

73153h

7257600
fn+2−

191h2

155520
gn+2

(12)

yn+ 4
3

= yn+1−
191h

435456
fn+

1343h

302400
fn+ 1

3
−

11371

483840
fn+ 2

3
+

49571h

272160
fn+1+

47777h

241920
fn+ 4

3
−

2257

60480
fn+ 5

3
+

25451h

2419200
fn+2−

191h2

155520
gn+2

(13)

yn+ 5
3

= yn+1−
h

13608
fn+

h

945
fn+ 1

3
−

131h

15120
fn+ 2

3
+

1171h

8505
fn+1+

3067h

7560
fn+ 4

3
+

134h

945
fn+ 5

3
−

491h

45360
fn+2+

h2

972
gn+2

The main and additional Methods are combined and implemented simultaneously as single block

integrators to provide the approximate solutions yn+ 1
3
, yn+ 2

3
, yn+1, yn+ 4

3
, yn+ 5

3
, yn+2 for equation (1)

at discrete block points t = tn+ 1
3
, tn+ 2

3
, tn+1tn+ 4

3
, tn+ 5

3
, tn+2, n = 0, 2, . . . , N−2 on a partition [t0, Tn].

3. Analysis of the two step second derivative hybrid block method

In this section, we discuss the local truncation error and order, consistency, zero-stability, and con-

vergence of the two step second derivative hybrid block method.
The combined methods (8-12) can be represented as a matrix finite difference equation in block form

given as

(14) A(1)Y$+1 = A(0)Y$ + h[B(1)F$+1 +B(0)F$] + h2C(1)G$+1,

where
Y$+1 = (yn+ 1

3
, yn+ 2

3
, yn+1, yn+ 4

3
, yn+ 5

3
, yn+2)T , Y$ = (yn− 5

3
, yn− 4

3
, yn−1, yn− 2

3
, yn− 1

3
, yn)T

F$+1 = (fn+ 1
3
, fn+ 2

3
, fn+1, fn+ 4

3
, fn+ 5

3
, fn+2)T , F$ = (fn− 5

3
, fn− 4

3
, fn−1, fn− 2

3
, fn− 1

3
, fn)T

G$ = (gn+ 1
3
, gn+ 2

3
, gn+1, gn+ 4

3
, gn+ 5

3
, gn+2)T

$ = 0, 1, 2, . . . and n = 0, 2, . . . and the matrices A(1), A(0), B(1), B(0) and C(1) are defined as follow

A(1) =



1 0 1 0 0 0
0 1 1 0 0 0

0 0 −1 0 0 0

0 0 1 1 0 0
0 0 1 0 1 0

0 0 1 0 0 1



A(0) =



0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0


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B(1) =



− 113
945

− 6659
15120

821
8505

− 197
7560

4
189

− 121
15120

3263
302400

− 75499
483840

− 62941
272160

15713
241920

− 1873
60480

73153
7257600

− 1143
2240

− 1521
17920

− 1613
3360

2547
8960

− 387
2240

3319
53760

1343
302400

− 11371
483840

49571
272160

4777
241920

− 2257
60480

25451
2419200

1
945

− 131
15120

1171
8505

3067
7560

134
945

− 491
45360

9
2240

− 369
17920

563
3360

3123
8960

153
448

8567
53760



B(0) =



0 0 0 0 0 187
68040

0 0 0 0 0 − 383
435456

0 0 0 0 0 − 527
5376

0 0 0 0 0 − 191
435456

0 0 0 0 0 − 1
13608

0 0 0 0 0 − 11
26880



C(1) =



0 0 0 0 0 1
972

0 0 0 0 0 − 191
155520

0 0 0 0 0 − 1
128

0 0 0 0 0 − 191
155520

0 0 0 0 0 1
972

0 0 0 0 0 − 1
128


3.1. Local truncation error and order. Following Fatunla [11] and Lambert [19] we define the local

truncation error associated with (2) to be the linear difference operator

(15) L[y(t, h] =
k∑
j=0

{αjy(t+ jh)− hβjy′t+ jh− h
v∑
j=1

βηj y
′t+ ηjh} − h2γky′′(t+ kh)

Assuming that y(t) is sufficiently differentiable, we can expand the terms in (10) as a Taylor series about

the point t to obtain the expression

L[y(t, h] = C0y(t) + C1y
′(t) + . . .+ Csh

sy(s)(t) + . . . ,

where the constant coefficients Cs, s = 0, 1, . . . are given as follows:

C0 =

k∑
j=0

αj , C1 =

k∑
j=0

jαj−
k∑
j=0

jβj−
v∑
j=1

βηj

...Cs =
1

s!
[

k∑
j=0

jsαj−s(
k∑
j=0

js−1βj+
v∑
j=0

ηs−1
j βηj )+s(s−1)ks−2γk].

According to [17], we say that the method (3) has order m if

C0 = C1 = . . . = Cs = 0, Cs+1 6= 0

therefore, Cs+1 is the error constant and Cs+1hs+1y(s+1)(tn) the principal local truncation error at the

point tn. Thus, we can write the local truncation error (LTE) of the method of order m as

LTE = Cs+1hs+1y(s+1)(tn) +©(hm+2).
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It is established from our calculations that the second derivative block hybrid methods are of order s=
(8, 8, 8, 8, 8, 8)T and relatively small error constants

C9 = [−
139

391910400
,−

433

8928208800
,

10067

285702681600
,

7123

285702681600
,−

17

8928208800
,

11

391910400
]T

.

3.2. Zero-stability. The zero stability of the methods in (13) are determined as the limit h tends to

zero. Thus as h→ 0 the method (13) tends to the difference system

A(1)Y$+1 = A(0)Y$

to obtain the first characteristic polynomial ρ(R) given by

(16) ρ(R) = det(RA(1) −A(0)) = R5(R− 1)

Following Fatunla [11], the block method (13) is zero-stable, since from (15), ρ(R) = 0 satisfies

|Rj | ≤= 1 , j = 1, . . . , 6, and for those roots with |Rj | = 1, the multiplicity does not exceed 1.We note

that the single members of the block method are not zero-stable, but this property is gained when the
methods are combined as numerical integrators in the block form (13).

3.3. Consistency and Convergence. The block method (13) is consistent since each of the integrators
has order s > 1. According to Henrici [17], convergence = consistency + zero-stability. Hence the two

step second derivative hybrid block method is convergent.

3.4. stability analysis. Definition 3.3.1: A numerical method is said to be A0-Stable if |ξ(−z)| < 1

for all z > 0

Definition 3.3.2 A numerical method is said to be Lo-Stable if |ξ(−z)| < 1 for all z > 0 and

lim
z→∞

ξ(−z) = 0, where z = hλ

By applying the method (13) to the test equation y′ = −λy y′ = λy, λ ∈ R to yield

Y$+1 = D(z)Y$ , z = λh,

where the matrix D(z) is given by

[D(z) = (A(1) − zB(1) − z2C(1))−1(A(0) + zB(0))] is the amplification matrix.
The stability function ξ(z) : C→ C is obtained from the eigenvalues of D(z) which is a rational function

with real coefficients given by

(17) ξ6 =
−AB
C +D

where A = 91922, B = 3.9281 ∗ 1017 + 3.4361 ∗ 1017z + 1.3586 ∗ 1017z2 + 3.2475 ∗ 1016z3 + 5.0061 ∗
1015z4 + 4.6889 ∗ 1014z5 + 2.0273 ∗ 1013z6, C = −3.6108 ∗ 1022 + 4.0631 ∗ 1022z − 2.1394 ∗ 1022z2 +
1.5466 ∗ 1021z3 − 1.6503 ∗ 1021z4 and D = 2.4306 ∗ 1020z5 − 6.3227 ∗ 1019z6 + 3.3189 ∗ 1018z7.

In the spirit of Hairer and Wanner [15], the stability region S is presented in white colour which is drawn

using the equations (21) as shown in Fig. 1. In Figures below,t the rectangles represent the zeros and
plus signs represent the poles of (16). The plots in white on the left half of the complex plane represent

the stability region which corresponds to the stability function (16).
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Clearly, from Figure 1 above, it is obvious that the method is not A- stable, since it has at least one
pole of the stability function (16) represented by the plus sign in the left half complex plane. However

the method is said to be Lo- Stable as it satisfies the definition 3.3.2

4. Numerical examples

In this section some numerical example are considered with all computations carried out with our

written code in Mapple 17.

Example 4.1. We consider the system of initial value problem which has been solved by Jackson and

Kanue [18] and Sahi etal. [27].

y′ = −y + 95z, y(0) = 1

z′ = −y − 97z, y(0) = 1

With exact solution of the system given by

y(t) = 95
47
exp( − 2t)− 48

47
exp(−96t)

z(t) = 48
47
exp( − 96t)− 1

47
exp(−2t)

We compare the new block method with related results obtained by Jackson and Kanue [18] and Sahi

etal. [27] and reproduced in Table 1. As expected the result shows twice as accurate as that Jackson
and Kanue [18] and gained at least five digit more than those of Sahi etal [27]

Table 1. Computed values of error = |y(t)− y|, error = |z(t)− z| for Example 4.1

h Jackson and Kanue [18] Sahi etal.citeSJ New method

|y(t)− y| |y(t)− y| |y(t)− y|
|z(t)− z| |z(t)− z| |z(t)− z|

0.0625 3× 10−7 9× 10−11 1× 10−16

4× 10−7 1× 10−8 1× 10−17

0.03125 1× 10−8 4× 10−12 5× 10−19

1× 10−8 4× 10−12 5× 10−20

Example 4.2. Next, we consider stiff system (see [5]), in the range 0 ≤ t ≤ 10

y′ = 998y + 1998z, y(0) = 1

z′ = −999y − 1999z, z(0) = 1

Its exact solution is given by the sum of two decaying exponentials components.

y1 = 4e−t − 3e−1000t , y2 = −2e−t + 3e−1000t

The stiffness ratio is 1:1000. In Table 3, the comparison of the result of new method with that in [5]
at the end point t = 10 is presented.

Example 4.3. Lastly, we considered the second order ordinary differential equation given by,

y′′ + 1001y′ + 1000y = 0

and reduced to a system of first order equation as,

y′ = z, y(0) = 1

z′ = −1000y − 1001z, z(0) = 0
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Table 2. A comparison of methods for Example 4.2 at h=0.1

t Exact BBDF8 New method BBDF8Absolute error New method Absolute error
y(t)× 10−3 y × 10−3 y × 10−3 |y(t)− y| |y(t)− y|
z(t)× 10−3 z × 10−3 z × 10−3 |z(t)− z| |z(t)− z|

10 0.18159971904994 0.18159971946833 0.18159971904994 4.183× 10−13 2.650× 10−18

-0.09079985952497 -0.09079985973416 0.09079985952597 2.092× 10−13 1.324× 10−18

This problem has also been considered by Abhulimen [1], Abhulimen and Okunuga [2] and Okunuga

[23]. The stiff system has eigenvalues λ1 = −1 and λ2 = 1000. For the purpose of comparison, we
solve the problem on the interval 0 < x < 1. Numerical results is compared with that of Abhulimen

[1], Abhulimen and Okunuga [2] and [23]. The results in table 3 showed that the new method is more

accurate than those ([1],[2], and [23].

Table 3. A comparison of methods for Example 4.3 at h=0.1

Method t error = |y10 − y(1)|
Abhulimen [1] 1 1.8× 10−7

Okunuga [23] 1 5.26× 10−8

Abhulimen and Okunuga [2] 1 5.29× 10−9

New method 1 1.56× 10−14

It is clear from table 3 that the new method yields a more accurate result than that derived in [1], [2]

and [23].

5. Conclusion

A two step second derivative hybrid method which is used together with additional methods in the

block form (13) to simultaneously solve (1) has been proposed. The block method is found to be Lo-
stable and implemented without the need for starting values or predictors and hence it is selfstarting. We

have demonstrated the efficiency of the methods on three numerical examples. Details of the numerical

results are displayed in Tables 1-3.
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