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A Two Step Lo- Stable Second Derivative Hybrid Block Method for
Solution of Stiff Initial Value Problems

OLUSHEYE AKINFENWA* ALI AHMED, OSUNKAYODE KABIR

ABSTRACT

We present a two step Lo-stable second derivative hybrid block
method of order eight for the direct solution of stiff Initial
Value Problems (IVPs). The main method and additional
methods are obtained from the same continuous scheme de-
rived using interpolation and collocation technique to form the
block method. The stability properties of the block method
is discussed via a single matrix equation. The methods si-
multaneously integrate the stiff IVPs over non-overlapping
intervals. Numerical results obtained using the proposed
second derivative hybrid block method reveal that it com-
pares favorably well with existing methods in the literature.

1. INTRODUCTION

Consider the stiff IVP of the form

(1) y = f(t,y), y(to) =wo , t € [a,b]

where f satisfies the Lipschitz condition as given in Henrici [17]).

Equation (1) occur in the mathematical formulation of physical situations in
a number of areas particularly in chemical kinetics, control theory, electrical cir-
cuit, robotics, aeronautics etc. Stiffness in most ordinary differential equations
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(ODEs) has posed a lot of computational difficulties in many practical applica-
tion model of ODEs and therefore affects the efficiency of numerical methods.
In the literature, several authors have proposed various methods including hy-
brid method for the solution of (1), see([3], [4], [6], [7],[8], [19]), and their ref-
erences therein. Hybrid method is the modified form of the k-step linear multi-
step method (LMM) obtained by incorporating off-step points in the derivation
process in order to overcome the Dahlquist barrier theorem. Second derivative
methods proposed by Enright ([9],[10]), were shown to be of order up to k+2 and
implemented in a variable order, variable-step mode. In this paper we proposed
a second derivative hybrid method of order 3k + 2 in the form (2)

k k v
(2) Z AjlYn+j = h(z ﬁjfn-i—j + Z /877]' fn+77j) + hZ’Ykgn-l-k
J=0 J=0 Jj=1

where a, = 1 and 8 = 0,k = 2 is the step number, 8z = 0 and o =
1 do not vanish, «j, B}, B,,andy; are unknown constants, v = 4 is the num-
ber of off-step points and 7; are rational numbers. Equation (2) is derived
through interpolation and collocation, (see Lie and Norsett [21], Onumanyi et
al. [24],[25],[26] and Gladwell and Sayers [14]). The continuous representation
generates two main discrete hybrid second derivative method and four additional
method which are combined and used as a block method to simultaneously pro-
duce approximations {yi,y%, Y1, Y5, y%,yQ} for the solution of (1) at a block of
points {ti,t%,tl,t%,tg,tg} h = ty41 —tn, n = 0,2..., N — 2 on a partition [a,
b], where a, beR, h is the constant step-size, n is a grid index and N > 0 is the
number of steps.

The rest of the paper is presented as follows: In section 2, we discuss the
basic idea behind the algorithm and obtain a continuous representation Y(¢) for
the exact solution y(¢) which is used to generate members of the block method
for solving (1). In section 3, we present the analysis of our Two step second
derivative hybrid block method. The accuracy of the new method is shown via
some standard problems in section 4. Finally, in section 5 we present some
concluding remarks.

2. DERIVATION OF THE METHOD

We derive a continuous representation of the second derivative hybrid method
which is used to generate the main discrete method by seeking an approximation
of the exact solution y(¢) by assuming a continuous solution Y (¢) of the form

p+2g—1

(3) Y(t)= ) bwit)
§=0
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where t € [tg,T], b; are unknown coefficients to be determined, ¢;(t) are poly-
nomial basis functions of degree p+ 2¢ — 1, such that the number of interpolation
points p and the number of distinct collocation points 2¢ are respectively chosen
to satisfy 1 <p < k and ¢ > 0.

The new proposed method is thus constructed by specifying the following pa-
rameters: 7; = (1/3,2/3,4/3,5/3),i =1...4,p1) = t,j=0,1...p+2¢—1,p=
1,q = 4,andk = 2 and assuming that Yntt denote numerical solution of the
exact solution y(tn+%), fn+% = f(tn+%), n is the grid index, ¢+ = 0,...6. While

_ df(tagroymtk))

By imposing the following conditions:

8
@) D bt =Yg, i =1

§=0

8
- .
(5) ijtiur%: n+%’7‘:07"'67
=0

8 .

© Z bji(j = 1)%122 = Yn+2-
=0

Equations (4), (5), and (6) lead to a system of nine equations which is solved to
obtain the coefficient b;.

The two step continuous second derivative hybrid method is obtained by substi-
tuting these values of b; into (3). After some algebraic computation, our method
yields the expression in the form:

2 4
(1) Y() =01(O)yns1 +h D Bi() frts + B D By (8) i, + h272(t) g s2
=0 j=1

Where ai(t), Bj(t), By, (t) and y2(t) are continuous coefficients. Equation (7)
is then used to generate the main discrete second derivative hybrid method (8)
and (9) by evaluating at point ¢ = (¢,42).

(®)

Yn+2 = Yn+1—

11h 9h 369 563h 3123h 153 8567h h?

268807 " T 22407+ % ~ 17020+ 2 T 3360 1 T 060 Tnt 4 T 1as Tt 3 T 3760 02 T 128 902

And evaluating at points
t=tn,t 1.t .2,  a,t 5 weobtained the additional methods (9),(10), (11),(12)

) n“!‘g’ n+§’ n+3? n+§

and (14).
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9

- 527h . 1143h 1521 1613h . 254Th 387 B9 h2
Yn = Un 1 ar6 /™ T 2040 Tt s 1792073 3360 Y™ 8960 Tntd T 2240775 T 53760 "2 128772
(10)

B L sTh 131 6659 821h Th 121 h2
Ynt3 T Y17 680407" " 945 Tt E T 15120773 85057 7560773 T 189 S T 1512072 972 It
(11)

B 383h . 3263 75199 62041h ,  15T13h 1873 73153 19142
Ynt3 = Unt ™ anas6 /" 302400775 T 483840773 272160 7" T 24192073 T 6048073 T 725760072 155520
(12)

B 191h 1343 UBTL  ASTIA ATTTTR 2257 | 25451h 19152
Yntg = Y™ anas6 /" 302400775 T 483840773 T 272160 7" T 241920773 T 604807+ 3 T 241920072 155520
(13)

B hop b 131h TR, 306Th 134K 4914 +h2
Ynt§ T Un 17936087 T oa5Tnt 3 T 15120773 T 8505 T 7560 T tE T 945 TntE T 4s3607 "2 grp Int?

The main and additional Methods are combined and implemented simultaneously as single block
integrators to provide the approximate solutions Yt Lo Yna 2>Ynt1:Yp 1 4,Y, 4 55 Ynt2 for equation (1)
3 3 3 3

at discrete block points t = tn+%,tn+%,tn+1tn+%,tn+%,tn+2, n=0,2,...,N—2on a partition [tg, Ty].

3. ANALYSIS OF THE TWO STEP SECOND DERIVATIVE HYBRID BLOCK METHOD

In this section, we discuss the local truncation error and order, consistency, zero-stability, and con-
vergence of the two step second derivative hybrid block method.
The combined methods (8-12) can be represented as a matrix finite difference equation in block form
given as

(14) AWy = AOY, + AIBWF iy + BOFL + 201Gyt

where
Yoi1 = (ynJr%vyn%7yn+1,yn+%,yn+%7yn+2)T, Yo = (U 5:Yp 4:Yn—1,Y,_ 2, 1,Un
Foi1 = (fn+%7 n+%7fn+17fn+%7fn+%vfn+2)T7 Fo = (f _%fn_%7fn—1,fn_%7fn_%7fn)T
Gw = (9n+%,gn+%:gn+1ygn+%7gn+g,gn+2)T
w=0,1,2,...and n =0,2,... and the matrices A1), A B B(O) and C(l) are defined as follow
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3.1. Local truncation error and order. Following Fatunla [11] and Lambert [19] we define the local
truncation error associated with (2) to be the linear difference operator

k

v
(15) Lly(t,h] = {ay(t+jh) — hBy't + jh — by Byy't +mih} — B2yey” (t + kh)
i=0 i=1

Assuming that y(¢) is sufficiently differentiable, we can expand the terms in (10) as a Taylor series about
the point t to obtain the expression

Lly(t, b = Coy(t) + Cry'(6) + ... + Cah®y(s)(1) + ...,

where the constant coefficients Cs,s = 0,1, ... are given as follows:

k k k v k k v
) ) : 1 ) o _ _
Co=D_ aj,Cv=3 joy=3 jBi=3 Bn;:Co=[3 i"a;=s(3_5*7 B+ 3 n; ™" Buy)+s(s— k" ]
j=0 7=0 j=0 j=1 " =0 j=0 j=0

According to [17], we say that the method (3) has order m if

Co=C1=...=Cs=0, Cs41 #0
therefore, Csy1 is the error constant and Csy1 h5+1y(5+1)(tn) the principal local truncation error at the
point ¢,. Thus, we can write the local truncation error (LTE) of the method of order m as

LTE = Cyoy1hs Tyt (1,) + O(h™12),
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It is established from our calculations that the second derivative block hybrid methods are of order s=
(8,8,8,8,8,8)T and relatively small error constants
139 433 10067 7123 17 11 T

Cy =[— s T ) ) T )
o= 391910400 8928208800 285702681600 285702681600 8928208800 391910400

3.2. Zero-stability. The zero stability of the methods in (13) are determined as the limit h tends to
zero. Thus as h — 0 the method (13) tends to the difference system

A(l)Yw+1 — A(O)Yw

to obtain the first characteristic polynomial p(R) given by

(16) p(R) = det(RAM — A = RS(R—1)

Following Fatunla [11], the block method (13) is zero-stable, since from (15), p(R) = 0 satisfies
|Rj| <=1,j=1,...,6, and for those roots with |R;| = 1, the multiplicity does not exceed 1.We note
that the single members of the block method are not zero-stable, but this property is gained when the
methods are combined as numerical integrators in the block form (13).

3.3. Consistency and Convergence. The block method (13) is consistent since each of the integrators
has order s > 1. According to Henrici [17], convergence = consistency + zero-stability. Hence the two
step second derivative hybrid block method is convergent.

3.4. stability analysis. Definition 3.3.1: A numerical method is said to be Ag-Stable if [£(—z)| < 1
for all z >0
Definition 3.3.2 A numerical method is said to be Lo-Stable if [£(—z)| < 1 for all z > 0 and

lim &(—z) = 0,where z = hA
zZ—00

By applying the method (13) to the test equation y' = —Ay v’ = Ay, A € R to yield
Yoi1=D(2)Yw , 2= Ah,

where the matrix D(z) is given by

[D(z) = (AD — 2B(M) — 220(1))=1(4(0) 4 2B(0)] is the amplification matrix.
The stability function £(z) : C — C is obtained from the eigenvalues of D(z) which is a rational function
with real coefficients given by

_ —AB
C+D

where A = 91922, B = 3.9281 % 1017 + 3.4361 % 1017z + 1.3586 * 101722 + 3.2475 % 101623 + 5.0061 =
101524 4 4.6889 * 101425 4 2.0273 * 101325, C = —3.6108 * 1022 + 4.0631 * 1022z — 2.1394 * 102222 +
1.5466 * 102123 — 1.6503 * 10212% and D = 2.4306 % 10292° — 6.3227 x 101926 + 3.3189 x 101827,

In the spirit of Hairer and Wanner [15], the stability region S is presented in white colour which is drawn
using the equations (21) as shown in Fig. 1. In Figures below,t the rectangles represent the zeros and
plus signs represent the poles of (16). The plots in white on the left half of the complex plane represent
the stability region which corresponds to the stability function (16).

(17) &6

Absolute Stability Region
Im

o

[=]
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Clearly, from Figure 1 above, it is obvious that the method is not A- stable, since it has at least one
pole of the stability function (16) represented by the plus sign in the left half complex plane. However
the method is said to be L,- Stable as it satisfies the definition 3.3.2

4. NUMERICAL EXAMPLES

In this section some numerical example are considered with all computations carried out with our
written code in Mapple 17.

Example 4.1. We consider the system of initial value problem which has been solved by Jackson and
Kanue [18] and Sahi etal. [27].

Y = —y+ 95z, y(0) =1

2= —y—97z y(0) =1
With exact solution of the system given by
y(t) = %emp( —2t) — %ezp(796t)
z(t) = %exp< — 96t) — %exp(—?t)
We compare the new block method with related results obtained by Jackson and Kanue [18] and Sahi
etal. [27] and reproduced in Table 1. As expected the result shows twice as accurate as that Jackson
and Kanue [18] and gained at least five digit more than those of Sahi etal [27]

TABLE 1. Computed values of error = |y(t) — y|, error = |2(t) — z| for Example 4.1

h Jackson and Kanue [18] Sahi etal.citeS] New method
ly(t) — vyl ly(t) — yl ly(t) — vyl
|z(t) — 2| |2(t) — 2| |2(t) — 2|

0.0625 3x 1077 9x 10~ 1 1x 10-16
4%x10°7 1x 108 1x10~17
0.03125 1x10-8 4 x 10712 5x 10719
1x10~8 4 x 10712 5x 10720

Example 4.2. Next, we consider stiff system (see [5]), in the range 0 < ¢ < 10
y' = 998y + 1998z, y(0) =1
2 = —999y — 1999z, 2(0) =1

Its exact solution is given by the sum of two decaying exponentials components.

y1 = de~t — 31000t 0 9=t | 3,—1000t
The stiffness ratio is 1:1000. In Table 3, the comparison of the result of new method with that in [5]
at the end point ¢t = 10 is presented.

Example 4.3. Lastly, we considered the second order ordinary differential equation given by,
y" 4+ 1001y’ + 1000y = 0
and reduced to a system of first order equation as,

y' =2 y0)=1
2/ = —1000y — 1001z, 2(0) =0
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TABLE 2. A comparison of methods for Example 4.2 at h=0.1

t Exact BBDFy New method BBDFgAbsolute error New method Absolute error
y(t) x 1073 y x 1073 yx 1073 ly(t) — yl ly(t) — yl
2(t) x 1073 zx 1073 zx 1073 |2(t) — z| |2(t) — 2|
10 0.18159971904994  0.18159971946833  0.18159971904994 4.183 x 10~ 13 2.650 x 10~ 18
-0.09079985952497 -0.09079985973416  0.09079985952597 2.092 x 10~13 1.324 x 1018

This problem has also been considered by Abhulimen [1], Abhulimen and Okunuga [2] and Okunuga
[23]. The stiff system has eigenvalues A1 = —1 and A2 = 1000. For the purpose of comparison, we
solve the problem on the interval 0 < = < 1. Numerical results is compared with that of Abhulimen
[1], Abhulimen and Okunuga [2] and [23]. The results in table 3 showed that the new method is more
accurate than those ([1],[2], and [23].

TABLE 3. A comparison of methods for Example 4.3 at h=0.1

Method t  error = |yi0 — y(1)]
Abhulimen [1] 1 1.8x 107
Okunuga [23] 1 5.26 x 1078

Abhulimen and Okunuga [2] 1 5.29 x 1077
New method 1 1.56 x 1014

It is clear from table 3 that the new method yields a more accurate result than that derived in [1], [2]
and [23].

5. CONCLUSION

A two step second derivative hybrid method which is used together with additional methods in the
block form (13) to simultaneously solve (1) has been proposed. The block method is found to be Lo-
stable and implemented without the need for starting values or predictors and hence it is selfstarting. We
have demonstrated the efficiency of the methods on three numerical examples. Details of the numerical
results are displayed in Tables 1-3.
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