

Nigerian Journal of Mathematics and Applications Volume 23, (2014), 14-19

©Nig. J. Math. Appl.

http://www.njmaman.com

ON SPECIAL CASES OF OPIAL'S AND HARDY'S INEQUALITIES

 $^1\mathrm{Anthonio}$ Yisa Oluwatoyin, $^1\mathrm{Rauf}$ Kamilu, $^1\mathrm{Ajisope}$ Michael Oyelami and $^2\mathrm{Wahab}$ Olalekan Taofeek

Abstract

In this paper, we establish the relationship between Opial-type and Hardy-type integral inequalities which extend Anthonio and Rauf Opial-type inequalities for convex function.

1. Introduction

The following interesting classical integral inequalities were stated and proved by Opial and Hardy respectively:

Theorem 1.1. Let $x(t) \in C'[0,b]$ be such x(0) = x(b) = 0 and x(t) > 0 in (0, b), then

where $\frac{b}{4}$ in the best possible constant. (See [9])

Theorem 1.2. For $f(x) \ge 0$ and p > 1,

(2)
$$\int_0^\infty \left[\frac{1}{x}f(t)dt\right]^p dx \le q^p \int_0^\infty f^p(t)dt$$

where $q = \frac{p}{p-1}$ is the best possible constant. (see [5])

Received December 22, 2014. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. 49Nxx & 15A39.

Key words and phrases. Integral inequalities, Opial-type and Hardy-type inequalities, Best possible, Convexity and Measurable functions.

¹Department of Mathematics, University of Ilorin, Ilorin, Nigeria; krauf@unilorin.edu.ng ²Department of Statistics and Mathematical Sciences, Kwara State University, Malete.

In view of the usefulness of these inequalities in analysis and its applications generally, many authors have established the necessary and sufficient conditions on p, q, v, w for the Hardy-type inequality:

(3)
$$\left[\int_a^b |u(x)|^q w(x) dx\right]^{\frac{1}{q}} \le C \left[\int_a^b |u'(x)|^p v(x) dx\right]^{\frac{1}{p}}$$

to hold, where C is a constant depending on p and q. See [7] and the reference therein.

Theorem 1.3. Let g be continuous and non-decreasing on $[a,b], 0 \le a \le b < \infty$, with g(x) > 0 for x > 0. Let $q \ge p \ge 1$ and f(x) be non-negative and Lebesgue-Stieltjes integrable with respect to g(x) on [a,b]. Suppose δ is a real number such that $-\frac{p}{a} < \delta < 0$ then

$$\left[\int_a^b g(x)^{\frac{\delta q}{p}} \left(\int_a^x f(t)dg(t)\right)^q dg(x)\right]^{\frac{1}{q}} \leq C(a,b,p,q,\delta) \left[\int_a^b g(x)^{(p-1)(1+\delta)} f(x)^p dg(x)\right]^{\frac{1}{p}}$$

where

(5)

$$C(a, b, p, q, \delta) = (-\delta)^{\frac{q(1-p)}{p}} \left(\frac{p}{q\delta + p}\right)^{\frac{p}{q}} g(b)^{\frac{q\delta + p}{p}} \left(g(b)^{-\delta} - g(a)^{-\delta}\right)^{\frac{q(p-1)}{p}} > 0$$

(See [2])

It was pointed out by Oguntuase (2009) that the constant $C(a, b, p, q, \delta)$ at the right hand side of (4) is wrong and stated the following:

Theorem 1.4. Let g be a continuous and nondecreasing function on $[a,b], 0 \le a < b < \infty$, with g(x) > 0 for x > 0. Let $q \ge p \ge 1$ and let f(x) be nonnegative and Lebesgue-Stieltjes integrable with respect to g(x) on [a,b]. Suppose δ is a real number such that $-\frac{p}{q} < \delta < 0$ then,

$$\left[\int_a^b g(x)^{\frac{q\delta}{p}} \left(\int_a^x f(t)dg(t)\right)^q dg(x)\right]^{\frac{1}{q}} \leq C(a,b,p,q,\delta) \left[\int_a^b g(x)^{(p-1)(1+\delta)} f^p(x)dg(x)\right]^{\frac{1}{p}}$$

where

$$C(a,b,p,q,\delta) = (-\delta)^{\frac{1-p}{p}} \left(\frac{p}{q\delta+p}\right)^{\frac{1}{q}} \left(g(b)^{-\delta} - g(a)^{-\delta}\right)^{\frac{p-1}{p}} \left(g(b)^{\frac{q\delta+p}{p}} - g(a)^{\frac{q\delta+p}{p}}\right)^{\frac{1}{q}}$$
(See [8])

Some special cases of the result were obtained. The purpose of the work is to extend the work of Anthonio and Rauf (2015) with a view to obtain the relationship between Opial-type and Hardy-type classical inequalities.

2. Main Results

Throughout this paper, we shall define: $h(x,t) = g(x)^{\zeta} f(t)^p g(t)^{p(1+\zeta)} d\mu(t)$ and $d\mu(t) = g(t)^{-(1+\zeta)} dg(t)$

The statement of the main results are as follows:

Lemma 2.1. Let h(x,t) be non negative, $x \ge 0, t \ge 0$ and $\mu \ge 0$ be non decreasing.

 $Let-\infty \leq 0 \leq x < \infty$, then the following holds:

(7)
$$\left[\int_{a}^{x} h(x,t) d\mu(t) \right]^{\frac{\nu}{p}} = g(x)^{\frac{\zeta\nu}{p}} \left[\int_{a}^{x} f(t)^{p} g(x)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}}$$

Proof:

Let f(t) and g(x) are absolutely continuous functions.

(8)
$$\left[\int_a^x h(x,t) d\mu(t) \right]^{\frac{\nu}{p}} = \left[\int_a^x g(x)^{\zeta} f(t)^p g(t)^{(p-1)} g(t)^{(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}}$$

(9)
$$\left[\int_{a}^{x} h(x,t) d\mu(t) \right]^{\frac{\nu}{p}} = g(x)^{\frac{\zeta\nu}{p}} \left[\int_{a}^{x} f(t)^{p} g(t)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}}$$

which complete the proof of the Lemma.

Lemma 2.2. Let h(x,t) be non negative, $t \ge 0, x \ge 0, p \ge 1$ and $\mu \ge 0$ be non decreasing.

 $Let-\infty \leq 0 \leq x < \infty$, then the following holds:

$$(10) \qquad \left[\int_{a}^{x} d\mu(t) \right]^{\frac{(1-p)\nu}{p}} = \left[\frac{g(t)^{-\zeta}}{-\zeta} \Big|_{a}^{x} \right]^{\frac{(1-p)\nu}{p}} = \left[g(x) - g(a) \right]^{\frac{(p-1)\zeta\nu}{p}} (-\zeta)^{-\frac{(p-1)\nu}{p}}$$

Proof:

$$\left[\int_{a}^{x} d\mu(t) \right]^{\frac{(1-p)\nu}{p}} = \left[\int_{a}^{x} g(t)^{-(1+\zeta)} dg(t) \right]^{\frac{(1-p)\nu}{p}} = \left[\frac{g(t)^{(-1-\zeta+1)}}{-1-\zeta+1} \Big|_{a}^{x} \right]^{\frac{(1-p)\nu}{p}}$$

(11)
$$= \left[\frac{g(t)^{-\zeta}}{-\zeta} \Big|_{a}^{x} \right]^{\frac{(1-p)\nu}{p}} = \left[g(x)^{\zeta} - g(a)^{\zeta} \right]^{\frac{(p-1)\nu}{p}} (-\zeta)^{-\frac{(p-1)\nu}{p}}$$

This completes the proof of the Lemma.

Lemma 2.3. Suppose all the conditions of Lemma 2.2 hold, then we have:

(12)
$$\left[\int_{a}^{x} h(x,t)^{\frac{1}{p}} d\mu(t)\right]^{\nu} = g(x)^{\frac{\zeta\nu}{p}} \left[\int_{a}^{x} f(t) dg(t)\right]^{\nu}$$

Proof:

$$\left[\int_{a}^{x} h(x,t)^{\frac{1}{p}} d\mu(t)\right]^{\nu} = \left[\int_{a}^{x} \left(g(x)^{\zeta} f(t)^{p} g(t)^{p(1+\zeta)}\right)^{\frac{1}{p}} g(x)^{-\zeta+1} dg(x)\right]^{\nu}$$

$$= \left[\int_{a}^{x} \left(g(x)^{\frac{\zeta}{p}} f(t) g(t)^{(1+\zeta)}\right) g(x)^{-\zeta+1} dg(x)\right]^{\nu}$$

$$= \left[\int_{a}^{x} g(x)^{\frac{\zeta}{p}} f(t) g(t)^{(1+\zeta)} g(x)^{-\zeta+1} dg(x)\right]^{\nu}$$

$$= \left[\int_{a}^{x} g(x)^{\frac{\zeta}{p}} f(t) dg(x)\right]^{\nu}$$

$$\Rightarrow \left[\int_{a}^{x} h(x,t)^{\frac{1}{p}} d\mu(t)\right]^{\nu} \geq g(x)^{\frac{\zeta\nu}{p}} \left[\int_{a}^{x} f(t) dg(t)\right]^{\nu}$$
(13)

The proof is completed.

Using the well known Jensen's inequality of the form: (see [3] and [4])

(14)
$$\int_{a}^{x} h(x,t)d\mu(s) \ge \left[\int_{a}^{x} d\mu(s)\right]^{1-p} \left[\int_{a}^{x} h(x,t)^{\frac{1}{p}} d\mu(s)\right]^{p}$$

Raising both sides of inequality (15) to power $\frac{\nu}{n}$ yields

(15)
$$\left[\int_{a}^{x} h(x,t) d\mu(s) \right]^{\frac{\nu}{p}} \ge \left[\int_{a}^{x} d\mu(s) \right]^{\frac{(1-p)\nu}{p}} \left[\int_{a}^{x} h(x,t)^{\frac{1}{p}} d\mu(s) \right]^{\nu}$$

Theorem 2.4. Let f(t) and g(t) be a absolutely continuous function which is non-decreasing on $[a,b], 0 \le a \le b < \infty$. Suppose that $p \ge \nu \ge 1, \zeta > 0$ and f(x) is Lebesgue-Stieltjes integrable with respect to g(x) on [a,b]. Then, (16)

$$\left[\int_{a}^{x} f(t) dg(t) \right]^{\nu} \leq \left(-\zeta \right)^{\frac{(1-p)\nu}{p}} \left[g(x) - g(a) \right]^{\frac{(1-p)\zeta\nu}{p}} \left[\int_{a}^{x} f(t)^{p} g(t)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}}$$

Proof:

Multiply both side of (16) with $g(x)^{\frac{\zeta\nu}{p}}$ and by combining the results of Lemma 2.1, 2.2 and 2.3 in inequality (17), we get (17)

$$g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^x f(t)^p g(t)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}} \ge (-\zeta)^{\frac{(p-1)\nu}{p}} \left[g(x) - g(a) \right]^{\frac{(p-1)\zeta\nu}{p}} g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^b f(t) dg(t) \right]^{\nu}$$

18 Anthonio Yisa Oluwatoyin, Rauf Kamilu, Ajisope Michael Oyelami and Wahab Olalekan Taofeek

that is

(18)

$$(-\zeta)^{\frac{(p-1)\nu}{p}} \left[g(x) - g(a) \right]^{\frac{(p-1)\zeta\nu}{p}} g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^x f(t) dg(t) \right]^{\nu} \leq g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^x f(t)^p g(t)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}}$$

which implies

(19)

$$g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^x f(t) dg(t) \right]^{\nu} \le \left(-\zeta \right)^{\frac{(1-p)\nu}{p}} \left[g(x) - g(a) \right]^{\frac{(1-p)\zeta\nu}{p}} g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^x f(t)^p g(t)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}} dg(t)^{\frac{(1-p)(1+\zeta)}{p}} g(x)^{\frac{(1-p)(1+\zeta)}{p}} g(x)^{\frac{(1-p)(1+\zeta)}{p}}$$

Integrating both sides of (20) with respect to g(x) on [a, b] and then raising both sides to power $\frac{p}{\mu}$ to obtain the following inequality:

$$\left[\int_a^b g(x)^{\frac{\zeta\nu}{p}} \left[\int_a^x f(t)dg(t)\right]^{\nu} dg(x)\right]^{\frac{p}{\nu}} \leq (-\zeta)^{\frac{(1-p)\nu}{p}} \left[\int_a^b \left[g(x) - g(a)\right]^{\frac{(1-p)\zeta\nu}{p}} g(x)^{\frac{\zeta\nu}{p}}\right]^{\frac{p}{p}}$$

(20)
$$\times \left[\int_a^x f(t)^p g(x)^{(p-1)(1+\zeta)} dg(t) \right]^{\frac{\nu}{p}} dg(x) \right]^{\frac{p}{\nu}}$$

which is the type of the result in [2] and [8] generalization.

This has successfully suggested that Hardy-type and Opial-type of the two classical inequalities can be found in Jensen's inequality for convex function.

References

- [1] Adeagbo-Sheikh, A. G. and Fabelurin. O. O., (2011). On a Bessack's Inequality related to Opial's and Hardy's. *Krag. J. Math.* **35** (1), 145-150.
- [2] Adeagbo-Sheikh, A. G. and Imoru, C. O., (2006). An Integral Inequality of the Hardy's -type. Krag. J. Math. 29, 57-61.
- [3] Anthonio Yisa Oluwatoyin and Rauf Kamilu, (2015). On New Variations of Opial-type Integral Inequalities, *Global J. of Math.* **3**(1), 226-231.
- [4] Anthonio Y. O., Salawu S. O. and Sogunro S. O., (2014). Dual Results of Opial's inequality, IOSR J. Math. 10, 01-04.
- [5] Hardy, G. H. (1925). G.H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger of Math. 54, 150?56.
- [6] Imoru, C. O. and Adeagbo-Sheikh, A. G., (2013). On an Integral Inequality of the Hardy's-type, Austral J. of Math. Ana. and App. 5(4), 56-64.
- [7] Kufner, A., Maligranda, L. and Persson, L-E. (2007). The Hardy Inequality. About its History and some Related Results, Vydavatelsky Servis Publishing House, Pilsen.
- [8] Oguntuase, James Adebayo (2009). Remark on an Integral Inequality of the Hardy type, Krag. J. Math. 32, 133-138.
- [9] Opial, Z., (1960). Sur une intégalité, Ann., Polon. Math. 8, 29-32.