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Abstract

In this paper, we establish the relationship between Opial-type

and Hardy-type integral inequalities which extend Antho-

nio and Rauf Opial-type inequalities for convex function.

1. Introduction

The following interesting classical integral inequalities were stated and proved
by Opial and Hardy respectively:

Theorem 1.1. Let x(t) ∈ C ′[0, b] be such x(0) = x(b) = 0 and x(t) > 0 in (0,
b), then

(1)

∫ b

a
|x(t)x′(t)|dt ≤ b

4

∫ b

a
(x′(t))2dt

where b
4 in the best possible constant. (See [9])

Theorem 1.2. For f(x) ≥ 0 and p > 1,

(2)

∫ ∞
0

[1

x
f(t)dt

]p
dx ≤ qp

∫ ∞
0

fp(t)dt

where q = p
p−1 is the best possible constant. (see [5])

Received December 22, 2014. ∗ Corresponding author.
2010 Mathematics Subject Classification. 49Nxx & 15A39.
Key words and phrases. Integral inequalities, Opial-type and Hardy-type inequalities, Best

possible, Convexity and Measurable functions.
1Department of Mathematics, University of Ilorin, Ilorin, Nigeria; krauf@unilorin.edu.ng

2Department of Statistics and Mathematical Sciences, Kwara State University, Malete.

14



ON SPECIAL CASES OF OPIAL’S AND HARDY’S INEQUALITIES 15

In view of the usefulness of these inequalities in analysis and its applications
generally, many authors have established the necessary and sufficient conditions
on p, q, v, w for the Hardy-type inequality:

(3)

[∫ b

a
|u(x)|qw(x)dx

] 1
q

≤ C
[∫ b

a
|u′(x)|pv(x)dx

] 1
p

to hold, where C is a constant depending on p and q. See [7] and the reference
therein.

Theorem 1.3. Let g be continuous and non-decreasing on [a, b], 0 ≤ a ≤ b <∞,
with g(x) > 0 for x > 0. Let q ≥ p ≥ 1 and f(x) be non-negative and Lebesgue-
Stieltjes integrable with respect to g(x) on [a, b]. Suppose δ is a real number such
that −p

q < δ < 0 then

(4)[∫ b

a
g(x)

δq
p

(∫ x

a
f(t)dg(t)

)q
dg(x)

] 1
q

≤ C(a, b, p, q, δ)

[∫ b

a
g(x)(p−1)(1+δ)f(x)pdg(x)

] 1
p

where
(5)

C(a, b, p, q, δ) = (−δ)
q(1−p)
p

(
p

qδ + p

) p
q

g(b)
qδ+p
p

(
g(b)−δ − g(a)−δ

) q(p−1)
p

> 0

(See [2])

It was pointed out by Oguntuase (2009) that the constant C(a, b, p, q, δ) at the
right hand side of (4) is wrong and stated the following:

Theorem 1.4. Let g be a continuous and nondecreasing function on [a, b], 0 ≤
a < b < ∞, with g(x) > 0 for x > 0. Let q ≥ p ≥ 1 and let f(x) be nonnegative
and Lebesgue-Stieltjes integrable with respect to g(x) on [a, b]. Suppose δ is a real
number such that −p

q < δ < 0 then,

(6)[∫ b

a
g(x)

qδ
p

(∫ x

a
f(t)dg(t)

)q
dg(x)

] 1
q

≤ C(a, b, p, q, δ)

[∫ b

a
g(x)(p−1)(1+δ)fp(x)dg(x)

] 1
p

where

C(a, b, p, q, δ) = (−δ)
1−p
p

(
p

qδ + p

) 1
q (
g(b)−δ − g(a)−δ

) p−1
p
(
g(b)

qδ+p
p − g(a)

qδ+p
p

) 1
q

(See [8])
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Some special cases of the result were obtained. The purpose of the work is
to extend the work of Anthonio and Rauf (2015) with a view to obtain the
relationship between Opial-type and Hardy-type classical inequalities.

2. Main Results

Throughout this paper, we shall define: h(x, t) = g(x)ζf(t)pg(t)p(1+ζ)dµ(t) and

dµ(t) = g(t)−(1+ζ)dg(t)
The statement of the main results are as follows:

Lemma 2.1. Let h(x, t) be non negative, x ≥ 0, t ≥ 0 and µ ≥ 0 be non decreas-
ing.
Let−∞ ≤ 0 ≤ x <∞, then the following holds:

(7)

[∫ x

a
h(x, t)dµ(t)

] ν
p

= g(x)
ζν
p

[∫ x

a
f(t)pg(x)(p−1)(1+ζ)dg(t)

] ν
p

Proof:
Let f(t) and g(x) are absolutely continuous functions.

(8)

[∫ x

a
h(x, t)dµ(t)

] ν
p

=

[∫ x

a
g(x)ζf(t)pg(t)(p−1)g(t)(1+ζ)dg(t)

] ν
p

(9)

[∫ x

a
h(x, t)dµ(t)

] ν
p

= g(x)
ζν
p

[∫ x

a
f(t)pg(t)(p−1)(1+ζ)dg(t)

] ν
p

which complete the proof of the Lemma.

Lemma 2.2. Let h(x, t) be non negative, t ≥ 0, x ≥ 0, p ≥ 1 and µ ≥ 0 be non
decreasing.
Let−∞ ≤ 0 ≤ x <∞, then the following holds:

(10)

[∫ x

a
dµ(t)

] (1−p)ν
p

=

[
g(t)−ζ

−ζ

∣∣∣∣x
a

] (1−p)ν
p

= [g(x)− g(a)]
(p−1)ζν

p (−ζ)
− (p−1)ν

p

Proof:[∫ x

a
dµ(t)

] (1−p)ν
p

=

[∫ x

a
g(t)−(1+ζ)dg(t)

] (1−p)ν
p

=

[
g(t)(−1−ζ+1)

−1− ζ + 1

∣∣∣∣∣
x

a

] (1−p)ν
p

(11) =

[
g(t)−ζ

−ζ

∣∣∣∣x
a

] (1−p)ν
p

=
[
g(x)ζ − g(a)ζ

] (p−1)ν
p

(−ζ)
− (p−1)ν

p

This completes the proof of the Lemma.
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Lemma 2.3. Suppose all the conditions of Lemma 2.2 hold, then we have:

(12)

[∫ x

a
h(x, t)

1
pdµ(t)

]ν
= g(x)

ζν
p

[∫ x

a
f(t)dg(t)

]ν
Proof:[∫ x

a
h(x, t)

1
pdµ(t)

]ν
=

[∫ x

a

(
g(x)ζf(t)pg(t)p(1+ζ)

) 1
p
g(x)−ζ+1dg(x)

]ν
=

[∫ x

a

(
g(x)

ζ
p f(t)g(t)(1+ζ)

)
g(x)−ζ+1dg(x)

]ν
=

[∫ x

a
g(x)

ζ
p f(t)g(t)(1+ζ)g(x)−ζ+1dg(x)

]ν
=

[∫ x

a
g(x)

ζ
p f(t)dg(x)

]ν

(13) ⇒
[∫ x

a
h(x, t)

1
pdµ(t)

]ν
≥ g(x)

ζν
p

[∫ x

a
f(t)dg(t)

]ν
The proof is completed.
Using the well known Jensen’s inequality of the form: (see [3] and [4])

(14)

∫ x

a
h(x, t)dµ(s) ≥

[∫ x

a
dµ(s)

]1−p [∫ x

a
h(x, t)

1
pdµ(s)

]p
Raising both sides of inequality (15) to power ν

p yields

(15)

[∫ x

a
h(x, t)dµ(s)

] ν
p

≥
[∫ x

a
dµ(s)

] (1−p)ν
p
[∫ x

a
h(x, t)

1
pdµ(s)

]ν
Theorem 2.4. Let f(t) and g(t) be a absolutely continuous function which is
non-decreasing on [a, b], 0 ≤ a ≤ b <∞. Suppose that p ≥ ν ≥ 1, ζ > 0 and f(x)
is Lebesgue-Stieltjes integrable with respect to g(x) on [a, b]. Then,
(16)[∫ x

a
f(t)dg(t)

]ν
≤ (−ζ)

(1−p)ν
p [g(x)− g(a)]

(1−p)ζν
p

[∫ x

a
f(t)pg(t)(p−1)(1+ζ)dg(t)

] ν
p

Proof :

Multiply both side of (16) with g(x)
ζν
p and by combining the results of Lemma

2.1, 2.2 and 2.3 in inequality (17), we get
(17)

g(x)
ζν
p

[∫ x

a
f(t)pg(t)(p−1)(1+ζ)dg(t)

] ν
p

≥ (−ζ)
(p−1)ν
p [g(x)− g(a)]

(p−1)ζν
p g(x)

ζν
p

[∫ b

a
f(t)dg(t)

]ν
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that is
(18)

(−ζ)
(p−1)ν
p [g(x)− g(a)]

(p−1)ζν
p g(x)

ζν
p

[∫ x

a
f(t)dg(t)

]ν
≤ g(x)

ζν
p

[∫ x

a
f(t)pg(t)(p−1)(1+ζ)dg(t)

] ν
p

which implies
(19)

g(x)
ζν
p

[∫ x

a
f(t)dg(t)

]ν
≤ (−ζ)

(1−p)ν
p [g(x)− g(a)]

(1−p)ζν
p g(x)

ζν
p

[∫ x

a
f(t)pg(t)(p−1)(1+ζ)dg(t)

] ν
p

Integrating both sides of (20) with respect to g(x) on [a, b] and then raising both
sides to power p

ν to obtain the following inequality:[∫ b

a
g(x)

ζν
p

[∫ x

a
f(t)dg(t)

]ν
dg(x)

] p
ν

≤ (−ζ)
(1−p)ν
p

[∫ b

a
[g(x)− g(a)]

(1−p)ζν
p g(x)

ζν
p

(20) ×
[∫ x

a
f(t)pg(x)(p−1)(1+ζ)dg(t)

] ν
p

dg(x)

] p
ν

which is the type of the result in [2] and [8] generalization.
This has successfully suggested that Hardy-type and Opial-type of the two clas-
sical inequalities can be found in Jensen’s inequality for convex function.
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