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A NOTE ON A CHARACTERIZATION OF LOCAL NULL
SEQUENCE

SUNDAY OLUYEMI

Abstract

We replace an arbitrary sequence of positive real numbers by

a sequence of positive integers in a characterization of local

null sequence, and consequently procure an example of a sep-

arated locally convex space in which convergence is Mackey.

1. Introduction

Our terminology shall be standard as found, for example, in [1, 2, 8,&3] signi-
fies the end or absence of a proof.
All topological vector spaces (E, τ) shall be over the field K = R or C, the reals
or the complex numbers; (E, τ) is called locally convex if it has a base of convex
neighborhood of zero. We denote the zero of E by θ and that of its scalar field
K by 0[1, p.47]. Of course R and C with their usual topologies are locally convex
spaces in their own right. By a lcs(E, τ) we shall mean a separated locally convex
space.
If τ1, τ2 are topologies on X 6= φ, by τ1 ≤ τ2 we shall mean that τ1 is coarser than
τ2 and for E ⊆ X and τ a topology on X, by τ |E we shall mean the topology
induced on E by τ .
If E is a vector space and p : E −→ R a seminorm on E, following Wilansky
[8, p.38], we shall denote the pseudometric topology of p by σp.σp is a vector
topology [8,Example 4.1.8, p.38], indeed, (E, σp) is a locally convex space [8,
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Problem 7.2.1, p.97].

2. SOME ELEMENTARY FACTS

We note some simple facts which we shall employ, at times without citation, in a
number of places. Let (E, τ) be a topological vector space. Suppose φ 6= A ⊆ E.
A is called balanced if tA ⊆ A for all t ∈ K with |t| ≤ 1 ; called convex if
rA + sA ⊆ A for all r, s ∈ K, 0 ≤ r ≤ 1, 0 ≤ s ≤ 1 and r + s = 1; and
called absolutely convex if it is both balanced and convex or equivalently [5, p.4]
if rA+ sA ⊆ A for all r, s ∈ K such that |r|+ |s| ≤ 1.
FACT 1:
Let (E, τ) be a topological vector space, and suppose φ 6= A ⊆ E. If A is bal-
anced, then
(i) |µ|A ⊆ |s|A, for µ, s ∈ K, |µ| ≤ |s|, and
(ii) µA = |µ|A, for all scalar µ . By (i) and (ii) therefore,
(ii)µA ⊆ sA, for |µ| ≤ |s|[1(17.2), p.68] If A is a convex set, then
(iii) λA+ µA = (λ+ µ)A, for λ > 0, µ > 0. If A is absolutely convex, then
(iv) for scalars λ 6= 0, µ 6= 0, λA+ µA = |λ|A+ |µ|A = (|λ|+ |µ|)A.
Proof:
(i): For s = 0, the result is clearly true. Also, if µ = 0, the result is true since A
is balanced and so contains the zero 0 of the space. So, suppose µ 6= 0, s 6= 0, and

consider ( |µ||s| )A. Since A is balanced and |µ|
|s| ≤ 1, it follows that(|µ||s|)A ⊆ A,

from which follows that |µ|A ⊆ |s|A.
(ii): [8, Problem 1.5.5, p.9].
(iii): [8 ,Problem 1.5, 3,p.9][6, Theorem 10.1 p.100][4, (v) of Theorem 13.6,
p.135][1, (25.10), p.101].
(iv): Immediate from (ii) and (iii) [4, (vi) of Theorem 13.6, p.135].

Let (E, τ) be a topological vector space,x ∈ E and ∅ 6= A ⊆ E. A is said to
absorb x if there exists α > 0 such that x ∈ λA for all λ ∈ K with |λ| ≥ α;
equivalently, if there exists ε > 0 such that λx ∈ A for all λ ∈ K with 0 < |λ| ≤ ε
[6, p.95]. A is called an absorbing set if it absorbs every x ∈ E. Similarly, for
∅ 6= A,B ⊆ E, A is said to absorb B provided there exists α > 0 such that
B ⊆ λA for all λ ∈ K with |λ| ≥ K[2, Definition 2.6.1, p.108]. If B is absorbed
by every neighborhood of zero of (E, τ), B is called a bounded set [8, p.47][JOR,
Definition 2.6.2,p.108].
FACT 2:
Let A and B be non-empty subsets of a vector space E such thatA is balanced.
Then A absorbs B if and only if there exists µ ∈ K such that B ⊆ µA.



A NOTE ON A CHARACTERIZATION OF LOCAL NULL SEQUENCE 107

Proof :
Paragraph following [2, Definition 2.6.1, p.108].
Let B be an absolutely convex absorbing subset of the topological vector space
(E, τ). Since B is absorbing, for x ∈ E there exists λx > 0 such that x ∈ αB for
all α ∈ K with |α| ≥ λx. So, the non-negative function qB : E −→ R, qB(x) =
inf{α > 0 : x ∈ αB}, x ∈ E, is well-defined,qB is called the gauge or the
Minkowski functional of B.qB is a seminorm [2, p.94]

Example 3 : (EB, σqB) By a disc of lcs(E, τ)[3, Definition 3.1, p.82] is meant
an absolutely convex bounded subset B of E. We denote by EB the linear span
in E of B. Let x ∈ EB, and so, .2

x = α1b1 + α2b2 + ...+ αnbn

for scalars α1, α2, ..., αnand b1, b2, ..., bn ∈ B and n ∈ N . Then

x = α1B + α2B + ...+ αnB which by Fact 1(ii),

= |α1|B + |α2|B + ...+ |αn| which by Fact 1(iv),

= (|α1 + |α2|+ ...+ |αn|)B
= λxB,whereλx = |α1|+ |α2|+ ...+ |αn|

. Since x was an arbitrary element of EB and B is balanced, it follows from
Fact 2 that b is absorbing in EB. Denoting by qB the Minkowski functional of
B(w.r.tEB), (EB, qB) is a seminormed space. We have

FACT 4:
With notation as in the preceding example,
(i) (EB, qB) is a normed space and has {εB : ε > 0} as a base of neighborhoods
of zero of (EB, σqB)[2, Proposition 3.5.6 and its proof, p.207− 208], and (ii) [3,
Proposition 3.2.2, p.82]X|EB ≤ σqB.

3. LOCAL CONVERGENCE

Let (E, τ) be a lcs. A sequence {xn}∞l=1 in E is said to locally converge or
to converge in the Mackey sense to x ∈ E if {xn}∞l=1 converges to x ∈ (EB, qB)
for some disc B[2, Exercise 3.7.7, p.225][3, Definition 5.1.1, p.151], and {xn}∞l=1
called a local null sequence if x is the zero 0 of E.

FACT 1:
Let (E, τ) be a lcs.
(i) [8, Problem 4.1.1, p.39] Net (xδ)δ∈(I,≤)in(E, τ) converges to x ∈ E ⇐⇒ net
(xδ−x) converges to zero.
(ii) [2, Exercise 3.7.7 (a), p.225] A sequence {xn}∞l=1 in (E, τ) locally converges
to x ∈ E if and only if (xnx)∞n=1is local null.
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(iii) [3, Proposition 5.1.3(ii), p.151] A sequence {xn}∞l=1 in (E, τ) is local null
if and only if there is an increasing unbounded sequence {αn}∞l=1 of positive real
numbers such that (αnxn)∞l=1 a null sequence in (E, τ).
(iv) A local null sequence is a null sequence [ by (ii) of Fact 1.4].
(v) xn −→ x locally ⇐⇒ xn −→ x ordinarily [by (ii), (iv) and (i)].
THEOREM 2:
Let (E, τ) be a lcs and {xn}∞l=1 a local null sequence in (E, τ). Suppose {αn}∞l=1 is
an unbounded increasing sequence of positive real numbers such that {αnxn}∞l=1
is a null sequence [by (iii) of the preceding Fact 1]. Let {βn}∞l=1 be an unbounded
increasing sequence of positive real numbers such that βn ≤ αn, for all n. Then,
(βnxn)∞l=1 is also a null sequence.

Proof Suppose V is an absolutely convex neighborhood of zero in (E, τ). Then,
αnxn −→ 0 in (E, τ) implies that there exists a positive integer N such that for
all n ≥ \, αnxn ∈ V . That is,
xn ∈ 1

αn
V , for all n ≥ N

For all n ≥ \, βn ≤ αn and so 1
βn
≥ 1

αn
and so by (ii) of Fact 1.1, 1

αn
V ⊆ 1

βn
V .

Hence, from (1) follows that xn ∈ 1
βn
V, for all n ≥ N , and so βnxn ∈ V , for all

n ≥ N .

COROLLARY 3 :
Let (E, τ) be a lcs and {xn}∞l=1 a sequence in (E, τ). Then, {xn}∞l=1 is local null
if and only if there exists an increasing sequence of positive integers {λn}∞l=1 di-
verging to ∞ such that {λnxn}∞l=1 is a null sequence.

Proof The implication ⇐= is trivial. So we establish =⇒, i.e., that {xn}∞l=1 is
local null implies there exists a sequence of positive integers {λn}∞l=1 such that
{λnxn}∞l=1 is a null sequence. If {αn}∞l=1 is as in Fact 1(iii) above, let βn be the
largest integer less than or equal to αn; if 0 < αn < 1 take βn = 1. Now evoke
Theorem 2, by considering a tail of {αnxn}∞l=1 if necessary.
Now, (iv) of Fact 1 says that local null sequences are also null. If in lcs(E, τ)
null sequences are also local null, (e.g., if (E, τ) is metrizable [3, Proposition
5.1.4, p.152]) then we say that convergence is Mackey in (E, τ). Indeed, local
convergence is also referred to as Mackey convergence. By Fact 1(i) and (ii) it
is immediate that if convergence is Mackey, then, ordinary convergence implies
local convergence. And so we may say that convergence is Mackey if and only if
ordinary convergence =⇒ local convergence.
Finally, employing Corollary 3 we give the promised example of the abstract.
Example 4:
Let (MF ([0, 1],R)) be the collection of all real-valued Lebesgue measurable func-
tions on the closed bounded interval [0, 1].lcs(MF ([0, 1],R)) is a real vector space
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under ordinary addition and scalar multiplication.

Consider
(∏

R,
∏

[0,1]

)
the product space of [0, 1] copies of R with the topology∏

of pointwise convergence (the product topology). Consider,

(MF ([0, 1],R),
∏

)

lcs(MF ([0, 1],R)) with the topology of pointwise convergence
∏

restricted to
it and still denoted by

∏
. By COROLLARY 3 AND [7, Theorem 3.5, p.95],

convergence is Mackey in the lcs(MF ([0, 1],R)).
Proof :
If {fn}∞l=1 is a sequence in lcs(MF ([0, 1],R)) such that

fn

∏
−→ 0

which is ⇐⇒
|fn|

∏
−→ 0

By [7, Theorem 3.5, p.95] there exists an increasing sequence {λn}∞l=1 of positive
integers, λn −→∞ as n −→∞, such that.

λn|fn|
∏
−→ 0

which is ⇐⇒
λnfn

∏
−→ 0

By our COROLLARY 3 therefore {fn}∞l=1 is local null in (MF ([0, 1],R),
∏

).
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