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CONSTRUCTION OF POLYNOMIAL BASIS AND ITS
APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

1Aliu, T. and 2Bamigbola O. M.

Abstract

The study identifies the versatility of basis functions in

expansionary method by constructing basis functions of

finite order, which satisfy some smoothness and differen-

tiability conditions. Effort was intensified towards solv-

ing empirical problems via the finite element method.

1. Introduction

The inappropriateness, theoretically of the usage of C0 elements in solving
problems of mathematical physics, was first identified by Zienkiewicz [1]. Such el-
ements were observed not differentiable at certain inter-element boundary points
in the domain over which the problems are defined. It was however discovered
by Bamigbola [3] that accurate results can be obtained with C0 elements using
the identified basis functions. We note that a basis function is an element of
a particular basis for a function space. In fact, every continuous function in a
function space can be represented as a linear combination of a basis function. It
helps in giving mathematical description of a curve or any data distributed over
space, time and any other type of continuum.
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2. Methodology and Results

BASIS FUNCTION
The set φn(x) of some given functions usually piecewise polynomials defined over
a given domain D is called basis functions when used for an expansion of the
form

(1) p(x) =
N∑
i=1

aiφi(x)

where ai , i = 0, 1, . . . , N are parameters of the approximation method. It is
pertinent to note that the choice of the set of basis functions is essential to the
expansion method for various reasons; among which is the facilitation of compu-
tational ease and accuracy of the resulting solution in [2], [3] and [4] polynomial
basis functions up to cubic power were constructed with the zeros of the cheby-
shev polynomials of the first kind and applied using the finite element method to
solve two points boundary value problems.
In [7] the zeroes of the legendre polynomial was employed to obtain same. It
was in [8 ] that a comparative study of the computational efficiency of the above
mentioned construction with some other polynomial basis functions were consid-
ered with a view to identifying the optimal choice among them which could be
used as a better approximating tool in the expansion method. The result of the
experiment is being generalized in this present work.
We reviewed the derivation of basis function of the nth Order and use MATLAB
to obtain the inverse of stiffness matrix at each step of the construction. With
the use of Garlarkin formulation in [3 ] we obtain solution to problems capped in
differential equations.

DERIVATION OF BASIS FUNCTIONS

We denote by Cnr (α) the space of polynomial of finite order defined over a closed
interval ∞ which are n-times continuously differentiable in the open interval δ .
We note that n and r are integral values in which n ≥ 0 , r ≥ 1
We select mesh points xi in the real interval [a,b] as xi = x+ ih i = 1, 2, 3, . . . ,m

where h = (b−a)
m

The appropriate form of a function p(x) in the sub interval xi, xi+1 in line with
[2 ] is

(2) p(x) =

(n+1)(r+1)∑
k=1

ai

(x
h

)k−1
, x ∈ [a, b]
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The mth derivatives of p(x) is given as

(3) pm(x) =

(
1

h

)(1−m) n+1,r+1∑
k=1

(k − 1)!

((k − 1−m)!)
ai

(x
h

)k−1−m
, x ∈ [0, h]

The process of deriving the set of basis functions involves the interpolation of the
expression in (3) at the nodal pointsxk, (k = 1, 2, 3, . . . , r−1) and solving for the
parameters ai resulting there from. Adopting the usual notation pmk = pm(xk) ,
and interpolating (5) at the nodes xk we have the matrix equation

(4) p = Aa

DERIVATION OF GENERALIZED POLYNOMIAL BASIS FUNC-
TIONS
Consider a linear polynomial function

(5) p(x) = a1 + a2
x

h
, C0

1 : [0, h]

Interpolating (5) at the nodal points 0 and h, we have
P1 = P (0) = a1
P2 = P (h) = a1 + a2
Which implies

(6)

(
p1
p2

)
=

(
1 0
1 1

)(
a1
a2

)

A =

(
1 0
1 1

)
Then

A−1 =

(
1 0
−1 1

)
Thus, the basis functions are:

(7) φi =
(

1 x/h
)( 1 0
−1 1

)
i = 1, 2

φ1 = 1− x

h
,Φ2 =

x

h
Consider a quadratic polynomial function

(8) p(x) = a1 + a2
x

h
+ a3

x

h

2
C0
2 : [0,

x

h
, h]

Interpolating at the nodal points(0, h2 , h) we obtain
P1 = P (0) = a1
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P2 = P (h2 )) = a1 + 1
2a2 + 1

4a3
P3 = P (h) = a1 + a2 + a3P1

P2

P3

 =

1 0 0
1 1/2 1/4
1 1 1

a1a2
a3


A =

1 0 0
1 1/2 1/4
1 1 1


A−1 =

 1 0 0
−3 4 −1
2 −4 2


The basis functions are:

(9) φi =
(
1 x

h (xh)2
) 1 0 0
−3 4 −1
2 −4 2

 , i = 1, 2, 3

i.e
φ1= 1− 3xh + 2(xh)2

φ2= 4xh − 4(xh)2

φ3= −x
h + 2(xh)2

For a cubic polynomial function

(10) P (x) = a1 + a2(
x

h
) + a3(

x

h
)2 + a4(

x

h
)3 C0

2 : [0,
h

5
,
2h

3
, h]

P1 = P (0) = a1

(11) P2 = P (
h

3
) = a1 +

2

3
a2 +

1

9
a3 +

1

27
a4

P3 = P (h3 ) = a1 + 2
3a2 + 4

9a3 + 8
27a4

P4 = P (h) = a1 + a2 + a3 + a4
Pi = A ∗ ai i = 1, 2, 3, 4

A =


1 0 0 0
1 1/3 1/9 1/27
1 2/3 4/9 8/27
1 1 1 1


A−1 =


1 0 0 0

−11/2 9 −9/2 1
9 −45/2 18 −9/2
−9/2 27/2 −27/2 9/2


(12) φi =

(
1 x

h (xh)2 (xh)3
)
A−1, i = 1, 2, 3, 4
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φ1 = 1− 11
2
x
h + 9(xh)2 − 9

2(xh)3

φ2 = 9xh −
45
2 (xh)2 + 27

2 (xh)3

φ3 = −9
2
x
h
x
h + 18(xh)2 − 27

2 (xh)3

φ4 = x
h −

9
2(xh)2 + 9

2(xh)3

Consider a polynomial of degree four with five nodal points

C0
4 : [0,

h

4
, h2 ,

3h
4 , h]

(13) pi(x) = a1 + a2
x

h
+ a3(

x

h
)2 + a4(

x

h
)3 + a5(

x

h
)4, i = 1, 2, 3, 4, 5

P1 = P (0) = a1
p2 = P (h4 ) = a1 + a2

1
4 + a3(

1
4)2 + a4(4)3 + a5(

1
4)4

p3 = P (h2 ) = a1 + a2
1
2 + a3(

1
2)2 + a4(

1
2)3 + a5(

1
2)4

p4 = P (3h4 ) = a3 + a4
3
4 + a3(

3
4)2 + a4(

3
4)3 + a5(

3
4)4

p5 = P (h) = a1 + a2 + a3 + a4 + a5
Pi = A ∗ ai, i = 1(1)5

A =


1 0 0 0 0
1 1/4 1/16 1/64 1/256
1 1/2 1/4 1/8 1/16
1 3/4 9/16 27/64 81/256
1 1 1 1 1



A−1 =


1 0 0 0 0

−25/3 16 −12 16/3 −1
70/3 −208/3 76 −112/3 22/3
−80/3 96 −128 224/3 −16
32/3 −128/3 64 −128/3 32/3


The basis functions are:

(14) φi(x) =
(
1 x

h (xh)2 (xh)3 (xh)4
)
A−1, i = 1(1)5

Proceeding the same way, using MATLAB to evaluate the inverse of A (i.eA−1)
at each step, we were able to obtain the basis functions for C0

i (i = 1(1)10) whose
results could be seen as follows. It deeds be noted that for i > 10 matrix A
becomes invertible. Thus, recording no basis function.
To obtain a basic functions in C1

1 : [0, h], we consider a polynomial of degree
3.
i.e. (n+ 1)(r + 1)− 1
where

(15) Pi = a1 + a2
x

h
+ a3(

x

h
)2 + a4(

x

h
)3

By differentiating equation (15) and interpolating at the nodal points [0,h], we
have
P1 = a1
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P2 = a2
h

P3 = a1 + a2 + a3 + a4
p4 = a2

h + 2a3h + 3a4h
By generalization,
Pi = Aai i = 1, 2, 3, 4
where

A =


1 0 0 0
0 1/h 0 0
1 1 1 1
0 1/h 2/h 3/h


The basis functions are
φi =

(
1 x

h (xh)2 (xh)3
)
A−1 i = 1(1)4

φ1 = 1− 3(xh)2 + 2(xh)3

φ2 = h[xh − 2(xh)2 + (xh)3]

φ3 = 3(xh)2 − 2(xh)3

φ4 = h[−(xh)2 + (xh)3

To obtain basis function in C1
2 : [0, h2 , h], we consider polynomial of degree 5

(16) P = a1 + a2(
x

h
) + a3(

x

h
)2 + a4(

x

h
)3 + a5(

x

h
)4 + a6(

x

h
)5

By differentiating equation (16) and interpolating at the nodal points C1
2 : [0, h2 , h],

we have: P1 = a1
P2 = a2

1
h

P3 = a1 + 1
2a2 + 1

4a3 + 1
8a4 + 1

16a5 + 1
32a6

P4 = 1
ha2 + 1

ha3 + 3
4ha4 + 1

12ha5 + 5
16ha6

P5 = a1 + a2 + a3 + a4 + a5 + a6
P6 = 1

ha2 + 2
ha3 + 3

ha4 + 4
ha5 + 5

ha6
Pi = Aai i = 1, 2, 3, 4, 5, 6

A =


1 0 0 0 0 0
0 1

h 0 0 0 0
1 1/2 1/4 1/8 1/16 1/32
0 1

h
1
h

3
4h

1
2h

5
16h

1 1 1 1 1 1
0 1

h
2
h

3
h

4
h

5
h


The basis functions are:
φi =

(
1 x

h (xh)2 (xh)3 (xh)4 (xh)5 (xh)6
)
A−1 i = 1(1)6

i.e
φ1 = 24(xh)5 − 68(xh)4 + 66(xh)3 − 23(xh)2 + 1

φ2 = 4h(xh)5 − 12h(xh)4 + 13h(xh)3 − 6h(xh)2 + h(xh)

φ3 = 16(xh)4 − 32(xh)3 + 16(xh)2

φ4 = 16h(xh)5 − 40h(xh)4 + 32h(xh)3 − 8h(xh)2
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φ5 = 24(xh)5 + 52(xh)4 − 34(xh)3 + 7(xh)2

φ6 = 4h(xh)5 − 8h(xh)4 + 5h(xh)3 − h(xh)2

The process continue to degree 6. But for the purpose of this presentation, we
decided to present only the process with degrees 1 and 2 while other basis func-
tions with higher degrees can be found in the main thesis.
Construction of basis functions with order 2
For basis functions in C2

1 : [0, h]
Consider a polynomial equation of degree 5:

(17) P (x) = a1 + a2(
x

h
) + a3(

x

h
)2 + a4(

x

h
)3 + a5(

x

h
)4 + a6(

x

h
)5

By differentiating equation (17)twice and interpolating at nodal points [0,h], we
obtain:
P1 = a1
P2 = a2

1
h

P3 = ( 1
h)2a3

P4 = a1 + a2 + a3 + a4 + a5 + a6
P5 = 1

ha2 + 2
ha3 + 3

ha4 + 4
ha5 + 5

ha6
P6 = ( 1

h)22a2 + ( 1
h)26a4 + ( 1

h)212a5 + ( 1
h)220a6

Pi = Aai i = 1, 2, 3, 4, 5, 6

A =


1 0 0 0 0 0
0 1

h 0 0 0 0
0 0 2( 1

h)2 0 0 0
1 1 1 1 1 1
0 1

h
1
h

3
h

4
h

5
h

0 0 2( 1
h)2 ( 1

h)2 12( 1
h)2 20( 1

h)2


The basis functions are:
φi =

(
1 x

h (xh)2 (xh)3 (xh)4 (xh)5 (xh)6
)
A−1 i = 1(1)6

i.e
φ1 = 6(xh)5 + 15(xh)4 − 10(xh)3 + 1

φ2 = −3h(xh)5 + 8h(xh)4 − 6h(xh)3 + h(xh)

φ3 = −h2

2 (xh)5 + 3h
2

2 (xh)4 + 3h
2

2 (xh)3 + h2

2 (xh)

φ4 = 6(xh)5 − 15(xh)4 + 10(xh)3

φ5 = −3h(xh)5 + 7h(xh)4 − 4h(xh)3

φ6 = h2

2 (xh)5 − h2(xh)4 + h2

2 (xh)3

Equally, the basis functions of higher degrees can be found in the main thesis of
this research work.
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Table 1: BASIS FUNCTIONS OF SELECTED ORDERS(Ckr )
Order (k) Degree (r) y=x/h

0 1 φ1 = 1− y
0 1 φ2 = y
0 2 φ1 = 1− 3y + 2y2

0 2 φ2 = 4y − 4y2

0 2 φ3 = −y + 2y2

0 3 φ1 = 1− 3y + 2y2

0 3 φ2 = 1− (11/2)y + 9y2 − (9/2)y3

0 3 φ3 = −(9/2)y + 18y2 − (22/2)y3

0 3 φ4 = y − (9/2)y2 + (9/2)y3

1 1 φ1 = 1− 3y2 + 2y3

1 1 φ2 = h[y − 2y2 + y3]
1 1 φ3 = 3y2 − 2y3

1 1 φ4 = h[−y2 + y3]
1 2 φ1 = 24y5 − 68y4 + 66y3 − 23y2 + 1
1 2 φ2 = h[4y5 − 12y4 + 13y3 − 6y2 + y]
1 2 φ3 = 16y4 − 32y3 + 16y2

1 2 φ4 = h[16y5 − 40y4 + 32y3 − 8y2]
1 2 φ5 = 24y5 + 52y4 − 34y3 + 7y2

1 2 φ6 = h[4y5 − 8y4 + 5y3 − y2]
2 1 φ1 = −6y5 + 154 − 10y63 + 1
2 1 φ2 = h[−3y5 + 8y4 − 6y3 + y]
2 1 φ3 = h2/2[−y5 + 3y4 − 3y3 + y2]
2 1 φ4 = 6y5 − 15y4 + 10y63
2 1 φ5 = h[−3y5 + 7y4 − 4y3]
2 1 φ6 = h2/2[y5 − y4 + y3]

3. Numerical Examples

Illustration 1.
We consider the solution to a growth equation bellow using the constructed basis
functions via Galerkin Weighted Residual approach

(18)
d2u(x)

dx2
− u(x) = 0, 0 < x < 2

with u(0) = 1 andu(2) = exp(2)
by employing Galerkin Weighted Residual Method

(∈, φi) =
∫ 2
0 (d

2u(x)
dx2

− u(x))φidx = 0, i = 1, 2, 3, ...,

−→
∫ 2
0 (d

2u(x)
dx2

φi − u(x)φi)dx = 0
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−→ φi
du
dx |

2
0 −

∫ 2
0 (dudx

dφi
dx + uφi)dx = 0

since φi does not include the boundary
φi

du
dx |

2
0=0

−→
∫ 2
0 (dudx

dφi
dx + uφi)dx = 0

using the relation φi =
∑∈

e=1 φ
e
N4e

Ni

we have∑∈
e=1

∫ h
0 (

dφeN
dx

dφMe

dx + φeNφ
e
M )4Ni 4Mjujdx = 0

AeNM =
∫ h
0 (

dφeN
dx

dφMe

dx + φeNφ
e
M )dx

since Aij =
∑∈

e=1A
e
NM 4e

Ni
4e
Mj

with
φ1 = 1− x

h andφ2 = x
h

AeNM =

(
h/3 + 1/h h/6− 1/h
h/6− 1/h h/3 + 1/h

)
with the domain of the problem divided into four distinct elements with 5 nodes,
we have h = 0.5 such that

AeNM =

(
2.1667 −1.9167
−1.9167 2.1667

)
The global finite element equation is
AU = B where

A =


1.000 0 0 0 0

0 4.3333 −1.9167 0 0
0 −1.9167 4.3333 −1.9167 0
0 0 −1.9167 4.3333 0
0 0 0 0 1.0000



B =


1.0000
1.9167

0
14.1625
7.3891


(Note that the boundary conditions have been imposed)
by solving the resulting equation we have
u1
u2
u3
u4
u5

 =


1.0000
1.6348
2.6961
4.4608
7.3891


For 8 equal elements [h = 0.25]
the global finite element equation with the boundary conditions imposed reads
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1.0000 0 0 0 0 0 0 0 0
0 8.1666 −3.9583 0 0 0 0 0 0
0 −3.9583 8.1666 −3.9583 0 0 0 0 0
0 0 −3.9583 8.1666 −3.9583 0 0 0 0
0 0 0 −3.9583 8.1666 −3.9583 0 0 0
0 0 0 0 −3.9583 8.1666 −3.9583 0 0
0 0 0 0 0 −3.9583 8.1666 −3.9583 0
0 0 0 0 0 0 −3.9583 8.1666 0
0 0 0 0 0 0 0 0 1.0000





u1
u2
u3
u4
u5
u6
u7
u8
u9



=



1.0000
3.9583

0
0
0
0
0

29.2483
7.3891


which gives



u1
u2
u3
u4
u5
u6
u7
u8
u9


=



1.0000
1.2822
1.6453
2.1124
2.7129
3.4847
4.4766
5.7512
7.3891


with the quadratic cases in( C0

2 ), the results obtained for two quadratic elements
reads 

u1
u2
u3
u4
u5

 =


1.0000
1.6486
2.7198
4.4801
7.3891


while the results obtained for four quadratic elements reads
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u1
u2
u3
u4
u5
u6
u7
u8
u9


=



1.0000
1.284012
1.648787
2.117016
2.718389
3.490336
4.481802
5.75449
7.3891


The MATLAB code bellow was used to obtain the solution to the problem above
using the basis function in C1

1

functionx = Gauss(A, b)
b = [1.0000;−0.1032738; 4.7678571;
−0.0980655; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 35.2301729; 0.72461586; 7.3891; 0.7631004];
A = [100000000000000000;
00.0334821− 0.09806550.008444900000000000000;
0− 0.09806559.78571420− 4.76785710.0980655000000000000;
0− 0.008444900.0669642− 0.0980655− 0.0084449000000000000;
00− 4.7678571− 0.09856559.78571420− 4.76785710.09806550000000000;
000.0980655− 0.008444900.0669642− 0.0980655− 0.00844490000000000;
0000− 4.7678571− 0.09806559.78571420− 4.76785710.098065500000000;
00000.0980655− 0.008444900.0669642− 0.0980655− 0.008444900000000;
000000− 4.7678571− 0.09806559.78571420− 4.76785710.0980655000000;
0000000.0980655− 0.008444900.0669642− 0.0980655− 0.0084449000000;
00000000− 4.7678571− 0.09806559.78571420− 4.76785710.09806550000;
000000000.0980655− 0.008444900.0669642− 0.0980655− 0.00844490000;
0000000000− 4.7678571− 0.09806559.78571420− 4.76785710.098065500;
00000000000.0980655− 0.008444900.0669642− 0.0980655− 0.008444900;
000000000000− 4.7678571− 0.09806559.7857142000.0980655;
0000000000000.0980655− 0.008444900.06696420− 0.0084449;
000000000000000010; 000000000000000.0980655− 0.008444900.0334821];
[n, n] = size(A);
[n, k] = size(b);
x = zero(n, k);
fori = 1 : n− 1
m = −A(i+ 1 : n, i)/A(i, i); A(i+ 1 : n, :) = A(i+ 1 : n, :) +M ∗A(i, :);
b(i+ 1 : n, :) = b(i+ 1 : n, :) +M ∗ b(i, :);
end;
x(n, :) = b(n, :)/A(n, n);
fori = n− 1 : −1 : 1
x(i, :) = (b(i, :)−A(i, i+ 1 : n) ∗ x(i+ 1 : n, :))/A(i, i);
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end
Table 2: Summary of the results

Order of Continuity

C0
1 C0

1 C0
2 C0

2 C1
1 C1

1

Nodal point 4 Elements 8 Elements 4 Elements 8 Elements 4 Elements U(x) 4 Elements du
dx Exact

0 1.0000 1.0000 1.0000 1.0000 1.0000 0.3429 1.0000
1/4 1.2822 1.2840 1.2722 1.1843 1.2840
1/2 1.6348 1.6453 1.6486 1.6488 1.6378 1.6419 1.6487
3/4 2.1124 2.1170 2.1084 2.130 2.1170
1 2.6961 2.7129 2.7198 2.7184 2.7120 2.7262 2.7183

5/4 3.4847 3.4903 3.4860 3.4974 3.4903
3/2 4.4608 4.4766 4.4801 4.4818 4.4790 4.4879 4.4817
7/4 5.7512 5.7545 5.7533 5.7602 5.7546
2 7.3891 7.3891 7.3891 7.3891 7.3891 7.3934 7.3891

4. Conclusion

In this work, finite order basis functions φi(x)[i = 1, 2, (r + 1)(n + 1)] which
are not only continuous but have in addition, continuous derivatives have been
derived, as an invaluable tool for use in the expansion methods. Computational
advantages of the generalized basis are illustrated by the numerical results ob-
tained through it for a test problem, demonstrating the versatility of the new
approximating tool. Equally, we also observed that the higher the degree of the
basis function the more accurate the results. It is indeed an ongoing research;
efforts shall be geared towards presenting results on non-homogeneous and non-
linear differential equation problems.
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