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A Three-Step Algorithm for Solving Second Order Ordinary
Differential Equations

L. A. Ukpebor∗

Abstract

A linear Multistep Method (LMM) of step length of three with

six integrators and uniform order four through interpolation and

collocation procedures were developed. The integrators are im-

plemented on a Vanderpol’s oscillator Problem, stiff problem and,

exponential problems. The results acquired compares satisfacto-

rily with the existing method in the literatures. The properties

of the integrators are fully examined and confirmed to be

computationally reliable with the numerical experiments tested.

1. Introduction

This article presents numerical solution of second order ordinary differential equa-
tion. Among the furthermost significant mathematical tools used in producing
models in the physical sciences, Biological sciences and Engineering are differen-
tial equations. On the other hand, most of these differential equations do not
possess closed form or analytical solution or finite solutions.
In many actual situations of real-life, the differential equation that models the
problem is too complicated to solve exactly. Hence there is need to develop
an accurate algorithm for obtaining an approximating solution to the unique
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problems. Most recent researchers have developed some different methods to
solve problem of the form:

(1) y
′′
(x) = f(x, y, y

′
), y(x0) = y0, y

′
(x0) = y1

Amongst such researchers are ([2], [4], [5], [8], [9], [10] & [11]) to mention but a
few. This article is therefore motivated by the success story of the block methods.
Hence, a direct algorithm for solving second order ODEs in IVPs at step length
of three which are of uniform order four.

2. Methodology

The exact solution y(x) to (1) is approximated by:

(2) y (x) =
c+i−1∑
j=0

ajx
j

with the second derivative given as:

(3) y′′ (x) =
c+i−1∑
j=2

j (j − 1) ajx
j−2

Here, c is the number of collocation points and i is the number of interpolation
points. (2) is called interpolation equation while (3) is called collocation equa-
tion. Imposing the condition (2) and (3) at a strategic points give the following
equations:

(4) h5a5 + h4a4 + h3a3 + h2a2 + ha1 + a0 = yn+1

(5) 32h5a5+16h4a4+8h3a3+4h2a2+2ha1+a0 = yn+2

(6) 2a2 = fn

(7) 20h3a5+12h2a4+6ha3+2a2 = fn+1

(8) 160h3a5 + 48h2a4 + 12ha3 + 2a2 = fn+2

(9) 540h3a5+108h2a4+18ha3+2a2 = fn+3

Combining equations (4) to (9) and solve simultaneously gives the following values
of a0, a1, a2, a3, a4, a5

(10) a0 =
1

12
h2fn +

5

6
h2fn+1 +

1

12
h2fn+2 + 2yn+1 − yn+2
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(11)

a1 = − 1

360

127h2fn + 414h2fn+1 − 9h2fn+2 + 8h2fn+3 + 360yn+1 − 360yn+2

h

(12) a2 =
1

2
fn

(13) a3 = − 1

36

11fn − 18fn+1 + 9fn+2 − 2fn+3

h

(14) a4 =
1

24

2fn − 5fn+1 + 4fn+2 − fn+3

h2

(15) a5 = − 1

120

fn − 3fn+1 + 3fn+2 − fn+3

h3

Substituting (10) to (15) into (2) gives a continuous coefficient of the form:

(16) y (t) = α1 (t) yn+1 + α2 (t) yn+2 + h2 (β0(t)+β1(t)+β2(t)+β3(t))

where a1(t), a2(t), · · · and β0(t), β1(t), β2(t) & β3(t) are continuous coefficients.
See ([4], [7], [10] & [11]). The continuous method (16) is used to generate the
required method for solving (1). That is, evaluating (16) at t = 3 and t = 0 gives:

(17)
1

12
h2fn+1 +

5

6
h2fn+2 +

1

12
h2fn+3 − yn+1 + 2yn+2 = yn+3

(18)
1

12
h2fn +

5

6
h2fn+1 +

1

12
h2fn+2 + 2yn+1 − yn+2 = yn

Also evaluate the first derivative of (16) at t = 0, 1, 2, and 3 gives
(19)

− 1

360

127h2fn + 414h2fn+1 − 9h2fn+2 + 8h2fn+3 + 360yn+1 − 360yn+2

h
= y′n

(20)
1

360

8h2fn − 129h2fn+1 − 66h2fn+2 + 7h2fn+3 − 360yn+1 + 360yn+2

h
= y′n+1

(21)

− 1

360

7h2fn − 66h2fn+1 − 129h2fn+2 + 8h2fn+3 + 360yn+1 − 360yn+2

h
= y′n+2

(22)
1

360

8h2fn − 9h2fn+1 + 414h2fn+2 + 127h2fn+3 − 360yn+1 + 360yn+2

h
= y′n+3

Combining (16) to (21) together and solve simultaneously gives
(23)

yn+1 =
97

360
h2fn+

19

60
h2fn+1−

13

120
h2fn+2 +

1

45
h2fn+3 +y′nh+yn
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(24) yn+2 =
28

45
h2fn +

22

15
h2fn+1 −

2

15
h2fn+2 + yn +

2

45
h2fn+3 + 2y′nh

(25) yn+3 =
39

40
h2fn +

27

10
h2fn+1 +

27

40
h2fn+2 +

3

20
h2fn+3 + yn + 3y′nh

(26) y′n+1 =
3

8
hfn +

19

24
hfn+1 −

5

24
hfn+2 +

1

24
hfn+3 + y′n

(27) y′n+2 =
1

3
hfn +

4

3
hfn+1 +

1

3
hfn+2 + y′n

(28) y′n+3 =
3

8
hfn +

9

8
hfn+1 +

9

8
hfn+2 +

3

8
hfn+3 + y′n

3. Analysis of the Block Methods

3.1. Order and error Constants of the Block Methods. According to ([1],
[3], [4], [7] & [11]), the order of the new hybrid block methods (23) to (25) is
obtained by using the Taylor series and it has uniformly of order four, with an
error constants vector

(29) Cp+2 =

[
− 7

480
,− 1

45
,− 9

160

]T
3.2. Consistency.

Definition 3.1. ([1], [3] & [7]). The hybrid block method (23) to (25) is said to
be consistent if it has an order more than or equal to one i.e. p ≥ 1.

Therefore, the method is consistent.

3.3. Zero Stability.

Definition 3.2. ([11] & [12]). The hybrid block method (23) to (25) is said to
be zero stable if the first characteristic polynomial π(r) having roots such that
|rz| ≤ 1 and if |rz| = 1, then the multiplicity of rz must not be greater than six.

In order to find the zero-stability of hybrid block method (23) to (25), we only
consider the first characteristic polynomial of the method as follows:

(30) π(r) =

1 0 0
0 1 0
0 0 1

−
0 0 1

0 0 1
0 0 1

 = r2(r − 1)

which implies r = 0, 0, 1. Hence the method is zero-stable since |rz| ≤ 1.
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3.4. Convergence.

Theorem 3.3. ([1], [6] & [11]). Consistency and zero stability are sufficient
condition for linear multistep method to be convergent.

Since the method (23) to (25) are consistent and zero stable, it implies that the
method is convergent for all points.

4. Implementation of the Block Methods

In this section, the derived method (23) to (25) is implemented and its derivatives
(26) to (28) with the aid of MATLAB coding to solve second order problems in
order to show the level of accuracy and efficiency of the method.

4.1. Numerical Examples. The method is tested on Vanderpol oscillator, ex-
ponential and stiff second order problems to test the accuracy of the proposed
methods and our results are compared with the results obtained using existing
methods. The following problems are taken as test problems:

Example 4.1. (Vanderpol oscillator)

y
′′

= 2 cosx− cos3 x− y′ − y − y2y
′

y(0) = 0, y
′
(0) = 1, y

′′
(0) = 0, h = 0.1

Exact solution : y(x) = sinx

Source [4].

Example 4.2. (Exponential)

y
′′

= y
′
+ 2ex(x+ 1)

y(0) = 1, y
′
(0) = 1, y

′′
(0) = 0, h = 0.01

Exact solution : y(x) = ex(x2 + 1)

Source [7].

Example 4.3. (Stiff)

y
′′ − 100y = 0
y(0) = 1, y

′
(0) = −10, y

′′
(0) = 0, h = 0.01

Exact solution : y(x) = e−10x

Source [11].
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Table 1: Showing the result of Problem 1 with h = 0.1

X y-exact solution y-computed solution Error
K = 3, P = 4

Error in [8]
K = 1, P = 6

0.1 0.099833416646828155 0.099833416691809868 4.4982e−11 3.307291e−10

0.2 0.198669330795061130 0.198669331622222580 8.2716e−10 2.315513e−9

0.3 0.295520206661339600 0.295520211025704750 4.3644e−9 6.161694e−9

0.4 0.389418342308650690 0.389418356431192710 1.4123e−8 1.192381e−8

0.5 0.479425538604203500 0.479425573589082890 3.4985e−8 1.934444e−8

0.6 0.564642473395035930 0.564642546677376680 7.3282e−8 2.775449e−8

Table 2: Showing the result of Problem 1 with h = 0.01

X y-exact solution y-computed solution Error
K = 3, P = 4

0.01 0.009999833334166665 0.009999833334166481 1.8388e−16

0.02 0.019998666693333080 0.019998666693332671 4.0939e−16

0.03 0.029995500202495660 0.029995500202494946 7.1471e−16

0.04 0.039989334186634161 0.039989334186632350 1.8111e−15

0.05 0.049979169270678331 0.049979169270676402 1.9290e−15

0.06 0.059964006479444595 0.059964006479451083 6.4879e−15

0.07 0.069942847337532754 0.069942847368077044 3.0544e−11

0.08 0.079914693969172695 0.079914694029952382 6.0780e−11

0.09 0.089878549198011040 0.089878549288762599 9.0752e−11

0.1 0.099833416646828141 0.099833416869428440 2.2260e−10

Table 3: Problem 2 with h = 0.01

X y-exact solution y-computed solution Error
K = 3, P = 4

0.01 1.010151172100876500 1.010151172101339000 4.6252e−13

0.02 1.020609420562766500 1.020609420563829900 1.0634e−12

0.03 1.031381943034074900 1.031381943035875700 1.8008e−12

0.04 1.042476071431096100 1.042476071433893200 2.7971e−12

0.05 1.053899274116964200 1.053899274110861900 6.1022e−12

0.06 1.065659158112922900 1.065659158037588900 7.5334e−11
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Table 4: Results of Problem 3 using h = 0.01

X y-exact solution y-computed solution Error
K = 3, P = 4

0.01 0.904837418035959520 0.904837430763888890 1.2728e−8

0.02 0.818730753077981820 0.818730782222222290 2.9144e−8

0.03 0.740818220681717880 0.740818268124999960 4.7443e−8

0.04 0.670320046035639330 0.670320112940006040 6.6904e−8

0.05 0.606530659712633420 0.606530124252597220 5.3546e−7

0.06 0.548811636094026500 0.548806820609242130 4.8155e−6

0.07 0.496585303791409530 0.496572236683406890 1.3067e−5

0.08 0.449328964117221560 0.449306428523652770 2.2536e−5

0.09 0.406569659740599170 0.406531037370746310 3.8622e−5

0.1 0.367879441171442330 0.367817516384073950 6.1925e−5

4.2 Discussion of Results. Tables 1 shows the comparison of error in new
method with another error in the literature. Table 2-4 above show the tabular
display of the exact solution, computed solution and error of problem 2-3 on the
implementation of the newly established method with h = 0.1 and 0.01. It is
obvious that the block method is more efficient in terms of error when compared
with existing methods of higher order of accuracy.

Conclusion: In this article, the derivation of the new block method for solving
second order ordinary differential equations directly is examined. The method is
of order p = 4 which shows that it is consistent. The plus of the method over the
existing numerical methods is its ability to outperforms another method despite
that the proposed method here is of order p = 4 while the one in the literature
is p = 6. This has been shown in Table 1. This method is highly recommended.
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