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A Class of Two-Step Obrechkoff-Type of Hybrid Block Method for
Solving Initial Value Problems in Ordinary Differential Equations

L. A. Ukpebor∗, L. O. Adoghe and I. E. Airemen

Abstract

In this paper, we derived A Class of Two-Step Obrechkoff-Type of

Hybrid Block Method for Solving Initial Value Problem (IVP) in

Ordinary differential equations (ODEs) by collocation and inter-

polation techniques. The analysis of the proposed scheme shows

that it is zero stable, convergent and consistent. Numerical exam-

ples are also presented to show that the method compared favor-

ably with results of the other methods considered in the literature.

1. Introduction

Mathematical models are developed to help in the understanding of physical phe-
nomena. These models often yield equations that contain some derivatives of an
unknown function of one or several variables. Such equations are called Differ-
ential equation (D.E) [1]. A Differential equation is an equation which includes
the derivative of a function as well as the function itself, and the independent
variable. Differential equation is divided into two parts, ordinary and partial
differential equation. An equation is called ordinary differential equation if it has
one independent variable involve while partial differential equation is an equation
that has two or more independent variables. An Ordinary Differential Equations
of order with initial condition is given in the form the linear multistep meth-
ods have the advantage of been self-starting and permitting easy change of step
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length.of the form;

y
′
(x) = f(x, y(x)); y(x0) = y0(1)

where f is a continuous function over an interval of integration. However in most
cases, these first order problems (IVP) cannot be solved analytically and hence
the need for numerical methods. These numerical methods are adopted to obtain
an approximate solution to the initial value problem under consideration [6]-[11].
To that extent, several numerical methods such as one Step Method, Linear Mul-
tistep Methods, Hybrid Method and and Block Method have been developed base
on the nature and type of the differential equation to be solved [3]-[5].
Several authors have all proposed Linear Multistep methods (LMMs) to generate
numerical solutions to initial value problems (IVP). Linear multistep method is
unlike the one step where only single value yn is used to compute the next ap-
proximation yn+1, Linear Multistep Method need two or more preceding values
to be able to calculate yn+1. These proposed methods in which the approximate
solution ranges from Power series, Chebychev’s, Lagrange’s and Laguerre’s poly-
nomials.
One distinct family of methods for the numerical approximation of (1) above is
the Obrechkoff methods. This family of methods is regarded to be distinct due to
the presence of higher derivatives in the method. The general form of the K-step
obrechkoff method with L derivatives of y is given by [2] as shown below.

k∑
j=0

αjyn+j =

l∑
i=1

hi
k∑

j=0

βijy
(i)
n+j(2)

where αk = +1.
However, this research work is aimed at developing A Class of Two-Step Obreachkoff-
Type Hybrid Block Method for Solving Initial Value Problems in Ordinary Dif-
ferential Equations.

2. Derivation of the Method

Consider the general form in equation (2) for implicit method when k = 2, l = 2.
Equation (2) can be written as;

yn+2 =

k−2∑
j=0

αjyn+j +
l∑

i=1

hi
k∑

j=0

βijy
(i)
n+j(3)

Then equation (3) can be express as:

yn+2 = α0y0 + h
[
β10y

(1)
n + β1 1

2
y

(1)

n+ 1
2

+ β11y
(1)
n+1 + β1 3

2
y

(1)

n+ 3
2

+ β12y
(1)
n+2

]
+ h2

[
β20y

(2)
n + β2 1

2
y

(2)

n+ 1
2

+ β21y
(2)
n+1 + β2 3

2
y

(2)

n+ 3
2

+ β22y
(2)
n+2

](4)
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Using Taylor’s series expansion to expand individual terms in equation (4) and
upon substitution of the expansions back equation (4), the matrix form Ax = B
obtained from the expansion;

yn+a = y(xn + ah) = y(xn) + ahy
′
(xn) +

(ah)2

2!
y
′′
(xn) + ...

Here, Taylor series expansion is used to expand each term in equation (4) with
collocation and interpolation techniques.

yn+a = y(xn + ah) = y(xn) + ahy
′
(xn) +

(ah)2

2!
y
′′
(xn) + ...

and the coefficient of y(i)(xn) are equated to be;
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
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(5)
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Solving equation (5) using matrix inverse we have the following parameters;(
α0, β1 1

2
, β11, β1 3

2
, β20, β2 1

2
, β21, β2 3

2
, β22

)T
=
(

1,
1601

8505
,
4096

8505
,
208

315
,
4096

8505
,
1601

8505
,

29

2835
,− 128

2835
, 0,

128

2835
,− 29

2835

)T
Substituting the values of α0, β1 1

2
, β11, β1 3

2
, β20, β2 1

2
, β21, β2 3

2
, and β22 into equa-

tion (4), we have;

yn+2 = yn + h
[1601

8505
y(1)
n +

4096

8505
y

(1)

n+ 1
2

+
208

315
y

(1)
n+1 +

4096

8505
y

(1)

n+ 3
2

+
1601

8505
y

(1)
n+2

]

+ h2
[ 29

2835
y(2)
n −
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2835
y

(2)

n+ 1
2

+
128

2835
y

(2)

n+ 3
2

− 29

2835
y

(2)
n+2

](6)

In other to implement the derived method in equation (6), additional methods are
needed. These methods are obtained by similar approach to have the following:

yn+1 = yn + h
[ 24463

136080
y(1)
n +

3308

8505
y

(1)

n+ 1
2

+
104

315
y

(1)
n+1 +
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y

(1)

n+ 3
2

+
1153
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y

(1)
n+2

]

+ h2
[ 421

54360
y(2)
n −

38

567
y

(2)

n+ 1
2

− 1

10
y

(2)
n+1 −

62

2835
y

(2)

n+ 3
2

− 43

45360
y

(2)
n+2

]
(7)

yn+ 1
2

= yn + h
[1539551
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y(1)
n +

89371

544320
y

(1)

n+ 1
2

+
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y

(1)
n+1 +

38341

544320
y

(1)

n+ 3
2

+
59681
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y

(1)
n+2

]

+ h2
[ 26051

2903040
y(2)
n −

31207

362880
y

(2)

n+ 1
2
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1280
y

(2)
n+1 −

1243

72576
y

(2)

n+ 3
2

− 2237
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y

(2)
n+2

]
(8)

yn+ 3
2

= yn + h
[ 6501

35840
y(1)
n +

921

2240
y

(1)

n+ 1
2

+
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y

(1)
n+1 +
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2240
y

(1)

n+ 3
2

+
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35840
y

(1)
n+2

]
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[ 339

35840
y(2)
n −
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y

(2)

n+ 1
2
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y

(2)
n+1 −
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4480
y

(2)

n+ 3
2

− 9

7168
y

(2)
n+2

]
(9)

Hence, Equation (6), (7), (8) and (9) present the desired hybrid block method
for the solution of equation (1).
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3. Order and Consistency

To check for the order and the convergence of this hybrid block method, the
following theorem and definition are adopted.

Theorem 3.1. According to [7]: A linear multistep method is convergent if and
only if, it is consistent and zero-stable.

Definition 3.2. [4]: A linear multistep method is consistent if it has order p ≥ 1.

Definition 3.3. [5]: The linear operator associated with Equation (2) is defined
as:

(10) L
[
y(x);h

]
=

k∑
j=0

αjyn+j +

l∑
i=1

hi
k∑

j=0

βijy
(i)
n+j

where y(x) is an arbitrary test function that is continuously differentiable in the

interval [a, b], expanding y(xn + jh) and y
′
(xn + jh) in Taylor series about xn

and collecting like terms in h and y gives;

L
(
y(x);h

)
= C0y(xn) + C1hy

(1)(xn) + C2h
2y(2)(xn) + · · ·+

Cph
py(p)(xn) + Cp+1h

p+1y(p+1)(xn)

Definition 3.4. The differential operator (10) and then associated LMM, are
said to be order P if;

C0 = C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = C9 = C10 = 0

and the error constant

C =
( 551

643778150400
,

1

1005903360
,

1

883097600
,

1

502951680

)
This implies that the hybrid block method has order p = 10. Hence, the hybrid
block method is consistent.

Definition 3.5. [1]: The hybrid block method is said to be zero-stable if the
roots R of the characteristic polynomial

(11) P (R) = Det
[
RA0 −A′

]
Satisfies |R| ≤ 1 and every root with |R0| = 1 has multiplicity not exceeding two
in the limit as h→ 0.
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
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
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54432

103
1260

38241
544320
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


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2
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
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0 0 0 1539551
8709120

0 0 0 24463
136080
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35840
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



fn− 1
2
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fn− 3
2

fn−2



+h2



− 31207
362880 − 81

1280 − 1243
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0 0 0 26051
2903040

0 0 0 421
54360
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35840

0 0 0 421
54360





gn− 1
2

gn−1

gn− 3
2
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

A0yn+1 = A(′)yn−1 + h[B(′)fn−1 +B
′
fn] + h2[C(′)gn−1 + C

′
gn]

The first characteristics polynomial of the above matrix is given by
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P (R) = det[RA0 −A′ ]

A0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, A

′
=



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1



P (R) = det


R



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


−



0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1




= det



R 0 0 −1

0 R 0 −1

0 0 R −1

0 0 0 R− 1


P (R) = det[R3(R− 1)]

Therefore, R = 0 and R = 1. The hybrid block method is zero-stable.
Therefore, since the hybrid block method is consistent and zero-stable, it is like-
wise convergent. The region of absolute stability is determine by obtaining the
stability polynomial of the form:

3(3z8 + 75z7 + 10456 + 9950z5 + 68190z4 + 336000z3 + 1142400z2 + 2419200z + 2419200)

4(3z8 − 75z7 + 10456 − 9950z5 + 68190z4 − 336000z3 + 1142400z2 − 2419200z + 2419200)
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Figures 1: Region of Absolute Stability of the new Step HOTBM for Solution of
ODEs

The Figure 1 shows the stability nature of the method, the interior part shows
the area in which the method is unstable while the external region of the circle
depicts the stable region.

4. Implementation of the New Method

We now illustrate the self-starting scheme with numerical examples below. All
calculations and programs were carried out with the aid of maple and MATLAB.
The algorithms are coded using MAT-LAB environment. The package has 3 sub-
routines. The first subroutine is for the exact solution to the problem, the second
subroutine is for the problem under consideration and the last subroutine are for
the codes. The program has been written in such a way that the user can use
any of the independent solution in the block or solve the problem using all the
solutions in the block simultaneously. The following notations are adopted in the
tables below.

2SBM: Two-Step Implicit Obrechkoff Method

2SHBM: New Two-Step Hybrid Block Method

2SEM: Two-Step Implicit Obrechkoff Method

Error: | Computed Solution-Exact Solution |.
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Problem 1.1 [7].

y
′

= 0.5(1− y), y(0) = 0.5, h = 0.1, with exact solution y(x) = 1− 0.5e−0.5x

The numerical solution is shown in Tables 1 and 2.

Problem 2.2 [7].

y
′

= −y, y(0) = 1, h = 0.1, with exact solution y(x) = e−x

Problem 3.3 [7].
In an oil refinery, a storage tank contains 2000 gal of gasoline that initially has
100 lb of an additive dissolved in it. In the preparation for winter weather, gaso-
line containing 2 lb of additive per gallon is pumped into the tank at a rate of
40galmin−1 the well-mixed solution is pumped out at a rate of 40galmin−1. Us-
ing a numerical integrator, how much of the additive is in the tank 0.1, 0.5 and
1 min after the pumping process begins?. Let y be the amount (in pounds) of
additive in the tank at time t. we know that y = 100 when t = 0. Thus, the
initial value problem modeling the mixture process is;

y
′

= 80− 45

2000− 5t
, y(0) = 100, h = 0, 1.

with theoretical solution:

y(t) = 2(2000− 5t)− 3900

(2000)9
(2000− 5t)9.

The numerical solutions are shown in the tables below:
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Table 1. Comparison of computed results for solving tested prob-
lem 1.1

X Exact Solution Computed Solution Computed Solution [9]
(2SEM)[7]

0.1 0.52438528774964299546 0.52439024390243902439 0.5243852877552174
0.2 0.54758129098202021343 0.54758601685347485034 0.5475812909859664
0.3 0.56964601178747109641 0.56965499173623217471 0.5696460117956543
0.4 0.59063462346100907069 0.59064317588795690893 0.5906346234953703
0.5 0.61059960846429756591 0.61061180145439803533 0.6105996086572718
0.6 0.62959088965914106700 0.62960249743238951881 0.66295908898470451
0.7 0.64765595514064328286 0.64767066828934612765 0.6476559553183269
0.8 0.66483997698218034967 0.66485398110580363236 0.6648399771546479
0.9 0.68118592418911335348 0.68120256739332540639 0.6811859243738679
1.0 0.69673467014368328825 0.69675050937978129410 0.6967346704442603

Table 2. Comparison of computed results for solving tested prob-
lem 1.1 continue

X Computed Solution [7] Computed Solution
(2SHBM)

0.1 0.52438528774960472804 0.52438528774964299546
0.2 0.54758129098194536511 0.54758129098202021342
0.3 0.56964601178736527269 0.56964601178747109638
0.4 0.59063462346087361956 0.59063462346100907066
0.5 0.61059960846413739010 061059960846429756588
0.6 0.62959088965895722513 0.62959088965914106696
0.7 0.64765595514044005788 0.64765595514064328282
0.8 0.66483997698195855368 0.66483997698218034963
0.9 0.68118592418887672320 0.68118592418911335343
1.0 0.69673467014343242661 0.69673467014368328820
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Table 3. Comparison of error for solving tested problem 1.1

X Error (2SEM) [7] Error [9] Error [7] Error (2SHBM)
0.1 4.956150E-06 5.574430E-12B 3.826740E-14 0.0
0.2 4.725970E-06 3.946177E-12 7.484830E-14 1.10E-20
0.3 8.979940E-06 8.183232E-12 1.058240E-14 2.10E-20
0.4 8.552430E-06 3.436118E-11 1.354510E-13 3.10E-20
0.5 1-219300E-05 1.92949473E-10 1.601760E-13 3.10E-20
0.6 .160780E-05 1.879040E-10 1.838420E-13 4.10E-20
0.7 1.471310E-05 1.776835E-10 2.032250E-13 4.10E-20
0.8 1.400410E-05 1.724676E-10 2.217960E-13 4.10E-20
0.9 1.664320E-05 1.847545E-10 2.366300E-13 5.10E-20
1.0 1.583920E.05 3.005770E-10 2.508620E-13 5.10E-20

Table 4. Comparison of computed results for solving tested prob-
lem 2.2

X Exact Solution Computed Solution [7] Computed Solution [8]
0.1 0.90483741803595957317 0.90476190476190476190 0.904837417881202
0.2 0.81873075307798185868 0.81866206899176567085 0.818730752939751
0.3 0.74081822068171786608 0.74069425289731179744 0.740818220548903
0.4 0.67032004603563930076 0.67020758320587849512 0.670320045918305
0.5 0.60653065971263342362 0.60637828956722340034 0.606530659599218
0.6 0.54881163609402643265 0.54867352672129543193 0.548811635994641
0.7 0.49658530379140951473 0.49641890512879110507 0.496585303694640
0.8 0.44932896411722159146 0.44917820458666454624 0.449328964033219
0.9 0.40656965974059911191 0.40639932795936316088 0.406569659658082
1.0 0.36787944117144232162 0.36772515831292540605 0.367879441100594
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Table 5. Comparison of computed results for solving tested prob-
lem 2.2 continue

X Computed Solution [7] Computed Solution
(2SHBM)

0.1 0.90483741804503260091 0.90483741803595957316
0.2 0.81873075309534995788 0.81873075307798185867
0.3 0.74081822070486153894 0.74081822068171786607
0.4 0.67032004606407889464 0.67032004603563930074
0.5 0.60653065974444846468 0.60653065971263342360
0.6 0.54881163612895298782 0.54881163609402643263
0.7 0.49658530382799175192 0.49658530379140951470
0.8 0.44932896415534885121 0.44932896411722159143
0.9 0.40656965977917485733 0.40656965974059911191
1.0 0.36787944121046227174 0.36787944117144232160

Table 6. Comparison of error for solving tested problem 2.2

X Error [7] Error [8] Error [7] Error (2SHBM)
0.1 7.5513E-05 1.5476E-10 9.0730E-12 1.10−20

0.2 6.8684E-05 1-3823E-10 1.1768E-11 1.10−20

0.3 1.2397E-04 1.3282E-10 2.3144E-11 1.10−20

0.4 1.1246E-04 1.1733E-10 2.8440E-11 2.10−20

0.5 1.5237E-04 1.1342E-10 3.1815E-11 2.10−20

0.6 1.3811E-04 9.9385E-11 3.4927E-11 2.10−20

0.7 1.6640E-04 9.6770E-11 3.6582E-11 3.10−20

0.8 1.5076E-04 8.4003E-11 3.8127E-11 3.10−20

0.9 1.7033E-04 8.2517E-11 3.8576E-11 3.10−20

1.0 1.5428E-04 7.0848E-11 3.9020E-11 2.10−20
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Table 7. Comparison of computed result for solving tested prob-
lem 3.3

X Exact Solution Computed Solution [7] Computed Solution (2SHBM)
0.1 107.7662301168309485 107.76623267141251405 107.76623011260318238
0.2 115.5149409193028512 115.51494346840455900 115.51494090305853318
0.3 123.2461630508845220 123.24616814117862409 123.24616302194271446
0.4 130.9599271090910725 130.95993218819786255 130.95992706677669876
0.5 138.6562636455413534 138.65627125250773431 138.65626358918532018
0.6 146.3352031660153395 146.33521075612409816 146.33520309495466018
0.7 153.9967761305114567 153.99678623520317743 153.99677604408937590
0.8 161.6410129533038516 161.64102303550463010 161.64101285086997114
0.9 169.2679440029996050 169.26795658656269977 169.26794388391000992
1.0 176.8775996025958865 176.87761215807155490 176.87759946621327280

Table 8. Comparison of error for solving tested problem 3.3

X Error [7] Error (2SHBM)
0.1 2.554000E-06 4.22776612E-09
0.2 2.549000E-06 1.624431802E-08
0.3 5.090000E-06 2.894180754E-08
0.4 5.079000E-06 4.231437374E-08
0.5 7.607000E-06 5.635603322E-08
0.6 7.590000E-06 7.106067932E-08
0.7 1.010000E-05 8.642208080E-08
0.8 1.008000-05 1.0243388046E-07
0.9 1.258000E-05 1.1908959508E-07
1.0 1.256000E-05 1.3638261370E-07

Conclusion: We have considered problems ranging from Linear, stiff and ap-
plication problem namely mixture model. Table 1 shows the comparison of the
exact solution, computed solution of the present method with that of other exist-
ing methods for problem 1.1. On the other hand, Table 2 shows the comparison
of the absolute error of the present method and other similar method in the lit-
erature. it could be observed that the absolute error in the present method gives
minimal error compared to other methods presented in [7] and [9]. Similarly, Ta-
ble 3 presents the comparison of the computational results of the present method
against that of other existing method for problem 1.2. In the same vein, we com-
pared the errors generated from the present method and other existing method
in the literature in Table 4 using h=0.1. It is very clear that the present method
performs better in terms of accuracy and convergence that the existing methods
[7] and [8]. Finally, to determine the application, suitability and accuracy of the
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present method, we applied the present method to a mixture model presented
in Problem 1.3, Table 5 shows the comparison of the exact solution, computed
solution of the present method and that of computed solution of existing method
[7]. It could be seen that there is a good agreement between exact solution and
the computed solution of the present method. In Table 6, the comparison of
the present method with other existing method in the literature namely [7] is
demonstrated. There is no doubt that the present method outperforms the ex-
isting method in the literature. Hence, we conclude that the method accurate,
absolutely stable and computational dependable.
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