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Estimates for some Classes of Analytic Functions Associated with
Pascal Distribution Series, Error Function, Bell numbers and

q-Differential Operator

E. A. Oyekan1∗, A. O. Lasode2

Abstract

In this paper, we considered two classes of analytic func-

tions. The classes are associated with Pascal distribution

series, error function, Bell numbers and q-derivative oper-

ator. Some early coefficient estimates for the classes were

established and some interesting nexus between our esti-

mates and that of some earlier known classes were presented.

1. Introduction

In this investigation, let the class of normalized analytic functions of the form

(1) f(z) = z +

∞∑
n=2

anz
n (z ∈ ∆ := {z : z ∈ C and |z| < 1})

be denoted by A. Also, let S, a subclass of A, be the class of analytic functions
that are also univalent in ∆. Two of the subclasses of class S that are of interest
in this work are the classes of starlike functions and convex functions. A function
f is said to be starlike in ∆ if Re(zf ′/f) > 0 and it is said to be a convex function
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if Re(1 + z(f ′′/f ′)) > 0. Let these two classes be respectively denoted by S? and
K. Let the class of Schwarz functions w(z) analytic in ∆ be represented as

(2) W :=
{
w(z) = w1z + w2z

2 + w3z
3 + · · · : w(0) = 0, |w(z)| < 1, z ∈ ∆

}
.

In the sequel, let

(3) F (z) = z +

∞∑
n=2

Anz
n ∈ A (z ∈ ∆).

Then we say that function f is subordinate to F , notationally represented as
f ≺ F if there exist a Schwarz function w(z) such that

f(z) = F (w(z)) (z ∈ ∆).

Suppose F ∈ S, then

f ≺ Fifandonlyiff(0) = F (0) and f(∆) ⊂ F (∆).

From (1) and (3), the convolution (or Hadamard product) of f and F notationally
represented by (f ? F )(z) is defined by

(4) (f ? F )(z) = z +
∞∑
n=2

anAnz
n (z ∈ ∆).

A special function which occurs in probability, statistics, material science and
partial differential equation is the error function

(5) erf(z) =
2√
π

∫ z

0
e−t

2
dt =

2√
π

∞∑
n=0

(−1)n−1zn+1

(2n+ 1)!
(z ∈ ∆)

found in [1]. For more properties of function erf(z) see the works of Alzer [4],
Coman [10], Elbert [11] and Altinkaya and Olatunji [3]. In 2018, Ramachandran
et al. [31] modified (5) by introducing the modified error function

(6) Ef(z) = z +

∞∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
zn (z ∈ ∆).

Next we present an analytic function P whose coefficients are the probabilities of
the Pascal distribution, thus we have

P(z) = z +
∞∑
n=2

(
n+m− 2

m− 1

)
p(n−1)(1− p)mzn(7)

(m > 1, 0 < p 6 1, z ∈ ∆).

The function (7) was introduced and studied by Porwal [29], see also [26]. Now
applying the principle of convolution and in view of the functions in (6) and (7)
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we hereby define the function

G(z) = (Ef ? P)(z)

= z +

∞∑
n=2

(
n+m− 2

m− 1

)
p(n−1)(1− p)m (−1)n−1

(2n− 1)(n− 1)!
zn(8)

for m > 1, 0 < p 6 1 and z ∈ ∆.
Another function of interest in this work is the function Q(z) studied by Kumar
et al. [16] and defined by

(9) Q(z) = ee
z−1 =

∞∑
n=0

Bn
zn

n!
= 1 + z + z2 +

5

6
z3 +

5

8
z4 + · · · (z ∈ ∆)

where the coefficients Bn (n ∈ N ∪ {0}) are called Bell numbers (B0 = B1 = 1)
while some few early Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, · · · . Bell
[7, 8] presented these numbers as a count of the possible partitions of a set.
Meanwhile, Kumar et al. [16] proved that function Q(z) is starlike with respect
to 1. It is this starlikeness property that attracted our attention to further study
this function. For more details, see [9, 16, 23, 24, 30].

For q ∈ (0, 1), the Jackson’s q-differentiation of a function f ∈ A of the form
(1) is defined by

(10)

Dqf(0) = f ′(0) = 1 (z = 0) if it exists,

Dqf(z) = f(z)−f(qz)
z(1−q) = 1 +

∞∑
n=2

[n]qanz
n−1 (z 6= 0),

D2
qf(z) = Dq(Dqf(z)) =

∞∑
n=2

[n]q[n− 1]qanz
n−2.


and note that

(11) [n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1 so that lim

q→1−
[n]q = n.

For some historical details, properties, applications, and some results on some
subclasses of analytic functions involving q-differentiation see the works in [2, 5,
6, 13, 14, 15, 17, 18, 19, 20, 32].

Definition 1.1. Using the concept of q-difference operator in (10) and in view
of the respective functions G(z) and Q(z) in (8) and (9) we hereby define two
new classes S?q,b(G,Q) and Kq,b(G,Q) as follows. A function G ∈ A is said to be

in the class S?q,b(G,Q) if, and only if, G satisfies the condition

(12) 1 +
1

b

{
zDqG(z)

G(z)
− 1

}
≺ Q(z) (z ∈ ∆).
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and G ∈ A is said to be in the class Kq,b(G,Q) if, and only if, G satisfies the
condition

(13) 1 +
1

b

{
zDq(DqG(z))

DqG(z)

}
≺ Q(z) (z ∈ ∆)

for q ∈ (0, 1), m > 1, 0 < p 6 1 and b ∈ C− {0}.

2. Applicable Lemmas

Let w ∈ W defined in (2). The following lemmas shall be applied in the course
of proving our results.

Lemma 2.1 ([12]). Let w(z) ∈ W, then |wn| 6 1 (n ∈ N). Equality occurs for
functions w(z) = eiϑzk (ϑ ∈ [0, 2π)).

Lemma 2.2 ([12]). Let w ∈ W, then for t ∈ C, |w2 + tw2
1| 6 max(1, |t|). The

inequality is sharp for the functions w(z) = z2.

Motivated by the works of the aforementioned authors in the Introductory section
and more importantly the works of Altinkaya and Olatunji [3], Oladipo [21],
Olukoya and Oyekan [22], Oyekan and Awolere [25] Oyekan and Opoola [27],
Oyekan et al. [28] and Porwal [29]. Henceforth, we shall assume that q ∈ (0, 1),
m > 1, 0 < p 6 1, b ∈ C− {0} and that G ∈ A unless otherwise stated.

3. Main Results

The following are the established results.

Theorem 3.1. Let G(z) ∈ S?q,b(G,Q), then

(14) |mp(1− p)m| 6 3|b|
q

(15) |m(m+ 1)p2(1− p)m| 6 12|b|
q(1 + q)

max

{
1,

∣∣∣∣(q + b)

q

∣∣∣∣}

(16) |m(m+ 1)p2(1− p)m − µ(mp(1− p)m)2|

6
12|b|

q(1 + q)
max

{
1,

∣∣∣∣12(q + b)2 + 12qb+ 9µq(1 + q)b

12q2

∣∣∣∣}

(17) |m(m2 +m+ 2)p3(1− p)m|

6
126|b|

q(1 + q + q2)
max

{
1,

∣∣∣∣σ[ tσ +
q + b

q
+

(
1 +

2

σ

)]∣∣∣∣}
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where

(18) σ =
[(1− [3]q)w1]b

(1− [2]q)(1− [3]q)
and t =

5

6
− b2

(1− [2]q)2
.

Proof. Suppose G(z) ∈ S?q,b(G,Q), then applying the subordination principle im-

plies that (12) can be expressed as

1 +
1

b

{
zDqG(z)

G(z)
− 1

}
= Q(w(z)) (z ∈ ∆).

or

(19) [zDqG(z)− G(z)][G(z)]−1 = [Q(w(z))− 1]b

Now using (10) in (7) we get

(20) DqG(z) = 1 +
∞∑
n=2

(
n+m− 2

m− 1

)
p(n−1)(1− p)m[n]qz

n−1

(m > 1, 0 < p 6 1, z ∈ ∆)

and by expansion we get

(21) DqG(z) = 1 + Cmm−1(1− p)mp−1/3z2 + Cm+1
m−1 (1− p)mp2 1

10
z3

+ Cm+2
m−1 (1− p)mp3 − 1

42
z4 + Cm+3

m−1 (1− p)mp4 1

216
z5 + · · ·

or

(22) zDqG(z) = z − 1

3
mp(1− p)mz2 +

1

20
m(m+ 1)p2(1− p)mz3

+
1

225
m(m2 +m+ 2)p3(1− p)mz4

− 1

5184
m(4m2 + 5m+ 6)p4(1− p)mz5 + · · ·

Applying binomial expansion shows that

(23) [G(z)]−1 = z−1 +
m

3
p(1− p)m +

m2

9
p2(1− p)2mz

− m3

27
p3(1− p)3mz2 +

m4

81
p4(1− p)4mz3 + · · ·
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Putting (22) (23) into the LHS of (19) and simplifying completely gives

(24) [zDqG(z)− G(z)][G(z)]−1 =

{
m

3
(1− [2]q)p(1− p)m

}
z

+

{
m

9
(1− [2]q)p

2(1− p)2m − m(m+ 1)

20
(1− [3]q)p

2(1− p)m
}
z2

+

{
m3

27
(1− [2]q)p

3(1− p)3m − m2(m+ 1)

60
(1− [3]q)p

3(1− p)2m

+
m(m2 +m+ 2)

225
(1− [4]q)p

3(1− p)m
}
z3

+

{
m4

81
(1− [2]q)p

4(1− p)4m − m3(m+ 1)

180
(1− [3]q)p

4(1− p)3m

+
m2(m2 +m+ 2)

675
(1− [4]q)p

4(1− p)2m

− m(4m2 + 5m+ 6)

5184
(1− [5]q)p

4(1− p)m
}
z4 + · · ·

Careful expansion of the RHS of (12) shows that

(25) b[Q(w(z))− 1] = bw1z + b{w2 + w2
1}z2 + b{w3 + 2w1w1 +

5

6
w3
1}z3

+ b{w4 + w2
2 + 2w1w3 +

5

2
w2
1w2 +

5

8
w4
1}z4 + · · ·

and comparing of the coefficients in (24) and (25) gives

(26)
m

3
(1− [2]q)p(1− p)m = bw1

(27)
m

9
(1− [2]q)p

2(1− p)2m − m(m+ 1)

20
(1− [3]q)p

2(1− p)m = b{w2 + w2
1}

(28)
m3

27
(1− [2]q)p

3(1− p)3m − m2(m+ 1)

60
(1− [3]q)p

3(1− p)2m

+
m(m2 +m+ 2)

225
(1− [4]q)p

3(1− p)m = b{w3 + 2w1w1 +
5

6
w3
1}
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(29)
m4

81
(1− [2]q)p

4(1− p)4m − m3(m+ 1)

180
(1− [3]q)p

4(1− p)3m

+
m2(m2 +m+ 2)

675
(1− [4]q)p

4(1− p)2m

− m(4m2 + 5m+ 6)

5184
(1− [5]q)p

4(1− p)m

= b{w4 + w2
2 + 2w1w3 +

5

2
w2
1w2 +

5

8
w4
1}.

Now from (26) we get

(30) mp(1− p)m =
3bw1

(1− [2]q)

and applying triangle inequality we have

(31) |mp(1− p)m| =
∣∣∣∣ 3bw1

(1− [2]q)

∣∣∣∣ =
3|b||w1|

(1− [2]q)

and applying (11) and Lemma 2.1 gives (14). Also by putting (30) into (27) and
completely simplifying we get

(32) m(m+ 1)p2(1− p)m =
−12b

1− [3]q

{
w2 +

(
1− b

1− [2]q

)
w2
1

}
so that by triangle inequality we get

(33) |m(m+ 1)p2(1− p)m| =
∣∣∣∣ −12b

1− [3]q

∣∣∣∣ ∣∣∣∣w2 +

(
1− b

1− [2]q

)
w2
1

∣∣∣∣
and applying Lemma 2.2 we get (15). Next by putting (30) and (32) into (28)
and completely simplifying we get

(34)

m(m2 +m+ 2)p3(1− p)m =
126b

((1− [4]q)

[
w3 +

(
5

6
− b2

(1− [2]q)2

)
w3
1 + 2w1w2

− [(1− [3]q)w1]b

((1− [2]q)(1− [3]q))

{
w2 +

(
1− b

(1− [2]q)

)
w2
1

}]
so that by triangle inequality we get

(35)

|m(m2+m+2)p3(1−p)m| =
∣∣∣∣ 126b

((1− [4]q)

∣∣∣∣ [ ∣∣∣∣w3 +

(
5

6
− b2

(1− [2]q)2

)
w3
1

∣∣∣∣+|2w1||w2|

+
[(1− [3]q)|w1|]|b|

((1− [2]q)(1− [3]q))

∣∣∣∣w2 +

(
1− b

(1− [2]q)

)
w2
1

∣∣∣∣ ]
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and applying (11) and Lemmas 2.1 and 2.2 we get (16). Putting (30), (32) and
(34) into (29) and completely simplifying gives

(36)
m4

81
(1− [2]q)p

4(1− p)4m − m3(m+ 1)

180
(1− [3]q)p

4(1− p)3m

+
m2(m2 +m+ 2)

675
(1− [4]q)p

4(1− p)2m

− m(4m2 + 5m+ 6)

5184
(1− [5]q)p

4(1− p)m

= b{w4 + w2
2 + 2w1w3 +

5

2
w2
1w2 +

5

8
w4
1}

or by using (30), (32) and (34) into (29) and simplifying completely we get

m(m2 +m+ 2)p3(1− p)m

=
126b

(1− [4]q)
[w3 + σ

(
t

σ
w3
1 +

(
1− [2]q − b
(1− [4]q)

))
w3
1 +

(
1 + 2

σ

)
2w1w2]

so that by applying triangle inequality, (18), (11) and Lemmas 2.1 and 2.2 we get
(17). �

Theorem 3.2. Let G(z) ∈ Kq,b(G,Q), then

|mp(1− p)m| 6 3|b|
1 + q

|m(m+ 1)p2(1− p)m − µ(mp(1− p)m)2|

6
6|b|

q(1 + q)
max

{
1,

∣∣∣∣6[2]q(1 + b)− 9µb[3]q
6[2]q

∣∣∣∣}
and

|m(m2 +m+ 2)p3(1− p)m|

6
42|b|
[4]q

max

{
1,

∣∣∣∣σ[ tσ + (1 + b) +

(
1 +

2

σ

)]∣∣∣∣}
where

σ =
b[(1− [2]q) + (1− [3]q)]

(1− [2]q)(1− [3]q)
and t =

5

6
− b2

(1− [2]q)2
.

Proof. The proof is omitted since it is akin to the technique used in proving
Theorem 3.1. �
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4. Nexus between Bound Results for The Pascal Distribution
Series for Analytic Function Classes and The Generalized

Distribution for Analytic Function Classes both of which are
Associated with Error Function and Bell Numbers

The Pascal Distribution Series for An-
alytic Function Class S?q,b(G,Q) Asso-
ciated with Error Function and Bell
Numbers

The Generalised Distribution for Ana-
lytic Function Class φSqb (Q) Associated
with Error Function and Bell Numbers
defined in [3]

Remarks

|mp(1− p)m| 6 3|b|
q |a1S | 6

3|b|
q |mp(1 − p)m| ≤

|a1S | =
3|b|
q

|m(m + 1)p2(1 − p)m| 6
12|b|
q(1+q) max{1, | (q+b)q |}

|a2S | 6
10|b|
q(1+q) max{1, | (q+b)q } |m(m + 1)p2(1 −

p)m| ≤ 6
5 |
a2
S |

|m(m2 + m + 2)p3(1 − p)m| 6
126|b|

q(1+q+q2)
max{1, |σ[ tσ + q+b

q +(1+ 2
σ )]|}

|a3S | 6
42|b|

q(1+q+q2)
max{1, |σ[ tσ + (q+b)

q +

(1 + 2
σ )]|}

|m(m2 + m +
2)p3(1 − p)m ≤
3|a3S |

|m(m + 1)p2(1 − p)m −
µ(mp(1 − p)m)2| 6
12|b|
q(1+q) max{1, | (12(q+b)

2+12qb+9q(1+q)b)
12q2

|}

|a2S − µ a1
S2 | 6

10|b|
q(1+q) max{1, | (10(q+b)

2+10qb+9q(1+q)b)
(10q2)

|}
|m(m + 1)p2(1 −
p)m − µ(mp(1 −
p)m)2| ≤ 6

5 |
a2
S −

µ
a21
S2 |

Conclusions: Two new classes of generalized analytic functions defined by some
known special functions such as Pascal distribution series, error function and Bell
numbers and the q-derivative operator were introduced and investigated in this
work. Some results obtained were the early coefficient estimates for functions in
each of the classes. However, if we vary some underlaying parameters in each
of the new classes, then the results of Theorems 3.1 and 3.2 will reduce to some
known results. Some of these results are featured in Section 4.
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