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Development of an improved numerical integration scheme, its
algorithm and application in the least square approximation

A. Y. Issah1, K. Issa2∗ and A. S. Olorunnisola3

Abstract

In this paper, we derived an improved numerical integration for

finding the approximation of functions. An algorithm was written

for the implementation in the least square approximation via

shifted Gegenbauer polynomials and subsequently, the accuracy

was tested on some selected examples to show the suitability

of the scheme. All the computations were done using Matlab.

1. Introduction

Least square approximation is a procedure to determine the best fit line to
data and well-known method of finding polynomial approximation to a func-
tion. The method easily generalizes to finding the best fit of the form y =
a1f1(x), · · · , arfr(x) [11]. This method is considered in the situation when the
input data for the dependent variable are given in the form of intervals [11, 12].
In 1805, Adrien Marie Legendre proposed the method of least square approxi-
mation to fit a line to data, but the method is credited to Carl Friedrich Gauss.
Carl Friedrich Gauss claims to have been in possession of the method of least
square approximation since 1795 after he published his method for calculating
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the orbits of celestial bodies in 1809. However, Gauss went beyond Legendre
and succeeded in connecting the method with the principle of probability and
normal distribution. Numerical quadrature was first proposed by David Gibbs
in 1915, in his paper titled ”A course in interpolation and numerical integration
for the mathematical laboratory”. The use of numerical techniques in finding an
approximate computation of an integral is called ”Numerical integration” [2, 4].
Numerical integration is used to compute an approximate value for integrals of
the form:

(1)

∫ b

a
f(x)dx,

various formula can be deduced by increasing the number of sub-intervals (n),
which will be discussed later in this paper. Fadugba [6] develop an improved
numerical integration method via transcendental function of exponential form for
the solution of initial value problems in ordinary differential equations, Xia [19]
proposed an improved numerical integration based on the Lagrange interpolation
scheme to predict the milling stability accuracy and efficiency.
Orthogonal polynomials play an important role in numerical analysis, as different
researchers have embedded it in different methods such as Tau method [7, 20],
Galerkin method [8, 3] to find an approximate solution to differential equations.
Chebyshev polynomials of all kinds (first, second, third and fourth kinds) [16, 1,
17], Legendre Pn(x) [15], Gegenbauer Cαn (x) polynomials [10, 9], to mention but
few were used by different researchers to solve fractional diffusion equations.

2. Least Square Approximation (LSA)

Given a function f(x) defined on some interval (a, b), least square approximation
is used to approximate f(x) by a polynomial of degree m (Γm(x)) (see [2, 4]).
In least square approximation, the values of constants cj are determined so as to
minimize the equation

(2) E(c0, c1, . . . , cm) =

∫ b

a
w(x) [f(x)− Γm(x)]2 dx

where,

(3) Γm(x) =
m∑
j=0

cjϕj(x)

and w(x) is the weight function, ϕj(x), j = 0, 1, . . . ,m are the orthogonal poly-
nomials with respect to the weight function w(x) over [a, b]. The necessary
condition for (c0, c1, . . . , cm) to be minimum are
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(4)
∂E

∂aj
= 0, j = 0, 1, . . . , m

(5)
∂E

∂aj
= −2

∫ b

a
w(x)[f(x)−

m∑
r=0

ajϕj(x)]ϕj(x)dx = 0

(6) aj =

∫ b
a w(x)f(x)ϕj(x)dx∫ b
a w(x)ϕ2

j (x)dx
, j = 0, 1, . . . ,m

to find aj in (6), we apply improved numerical integration (24), to be derive

in section 3. The value of
∫ b
a w(x)ϕ2

j (x)dx vary depending on the orthogonal
polynomials, for examples

(7)

∫ 1

−1
w(x)ϕ2

j (x)dx =



2
2j+1 , Legendre polynomials

π21−2αΓ(j + 2α)

j! [Γ(α)]2 (j + α)
, Gegenbauer polynomials

π, third and fourth kinds Chebyshev polynomials

Table 1. some commonly Used orthogonal polynomials

n Orthogonal polynomials (ϕj(x)) w(x)

1 Legendre 1

2 Chebyshev of first kind (Tj(x)) (1− x2)−
1
2

3 Chebyshev of second kind (Uj(x)) (1− x2)
1
2

4 Chebyshev of third kind (Vj(x))
√

1+x
1−x

5 Chebyshev of fourth kind (Wj(x))
√

1−x
1+x

6 Gegenbauer Cαj (x)) (1− x2)α−
1
2

7 Hermite Hj(x)) e−x
2
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2.1. Overview of numerical integration. The general form of the problem of
numerical integration may be written as:
Given a set of data points (xj , yj) , i = 0, 1, · · · , n of a function y = f(x),
where f(x) is not explicitly known. then evaluating the definite integral

(8) I =

∫ b

a
f(x)dx

by replacing y = f(x) by an interpolating polynomial θ(x) to obtain approximate
value for the definite integral of (8). Then it was derived by different researchers,
a general formula for numerical integration by using Newton’s forward differ-
ence formula with an assumption that the interval (a, b) is divided into n-equal
subintervals such that

(9) h =
b− a
n

, a = x0 < x2 < · · · < xn = b

with xn = x0 + nh, where h is the step-length, n is the number of subintervals a
and b is the limits of integration with b > a.
Hence, the integral in (8) can be written as

(10) I =

∫ xn

x0

f(x)dx

Using Newton’s forward interpolation formula, that is

(11) I =

∫ xn

x0

[
f0 +

(
p

1

)
4f0 +

(
p

2

)
42f0 + · · ·

]
dx

where x = x0 + ph

(12) I = h

∫ n

0

[
f0 +

(
p

1

)
4f0 +

(
p

2

)
42f0 + · · ·

]
dp

Hence, after simplification, we get
(13)

I =

∫ xn

x0

f(x)dx = nh

[
f0 +

n

2
4f0 +

n(2n− 3)

12
42f0 +

n(n− 2)2

24
43f0 + · · ·

]
Equation (13) has been established to be Newton-Cotes closed quadrature
formula. From the general formula (13), a lot researchers had work on (13) to
derive different integration formulae by substituting n = 1, 2, · · ·
Substituting n = 1 in (13) gives Trapezoidal’s rule(see (14)) , for n = 2 and
n = 3 give Simspson 1

3 (see (15)) and Simspon 3
8 (16)) respectively, for n = 4 and

n = 6 give Boole’s rule (see (17)) and Weddle’s rule (see (18)) see [4, 2, 5, 18].
Convergence of the trapezoidal rule was reported in [14, 13].
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(14) I =
n∑
r=1

Ir =

∫ xn

x0

f(x)dx =
h

2
[f0 + 2(f1 + f2 + · · ·+ fn−1) + fn]

(15)

I =

∫ xn

x0

f(x)dx =
h

3
[f0 + 4(f1 + f3 + f5 + · · ·+ f2n−1) + 2(f2 + f4 + f6 + · · ·+ f2n−2) + f2n]

(16)

I =

∫ xn

x0

f(x)dx =
3h

8
[f0 + 3(f1 + f2 + f4 + f5 + f7 + · · ·+ f3n−2 + f3n−1)

+2(f3 + f6 + f9 + · · ·+ f3n−3) + f3n]

(17)

I =

∫ xn

x0

f(x)dx =
2h

45
[7f0 + 32(f1 + f3 + f5 + f7 + · · · ) + 12(f2 + f6 + f10 + · · · )

+14(f4 + f8 + f12 + · · · ) + 7fn]

(18)

I =

∫ xn

x0

f(x)dx =
3h

10
[f0 + 5(f1 + f5 + f7 + f11 + · · · ) + (f2 + f4 + f8 + f10 + · · · )

+6(f3 + f9 + f15 + · · · ) + 2(f6 + f12 + f18 + · · · ) + fn]

3. Methodology

Here, an improved numerical integration is propose to solve (6), by increasing
the number of sub-intervals to n = 8, then substitute the resulting equation in
(3) to give the least square approximation to the function f(x).

3.1. Derivation of an improve numerical integration. From (13) put n = 8

(19)

I = h

[
8fr + 32∆fr +

208

3
∆2fr + 96∆3fr +

3928

45
∆4fr

+
2336

45
∆5fr +

18128

945
∆6fr +

736

189
∆7fr +

3956

14175
∆8fr

]
when r = 0,

(20)
I0 =

h

14175
[3956f0 + 23552f1 − 3712f2 + 41984f3

−18160f4 + 41984f5 − 3712f6 + 23552f7 + 3956f8]
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when r = 8,

(21)
I1 =

h

14175
[3956f8 + 23552f9 − 3712f10 + 41984f11

−18160f12 + 41984f13 − 3712f14 + 23552f15 + 3956f16]

when r = 16,

(22)
I2 =

h

14175
[3956f16 + 23552f17 − 3712f18 + 41984f19

−18160f20 + 41984f21 − 3712f22 + 23552f23 + 3956f24] ,

in general,

(23)
In =

h

14175
[3956f8n−8 + 23552f2n−7 − 3712f2n−6 + 41984f2n−5

−18160f2n−4 + 41984f2n−3 − 3712f2n−2 + 23552f2n−1 + 3956f2n]

therefore,
(24)

I =

∫ xn

x0

f(x)dx =
n∑
i=0

Ii

=
h

14175
[3956(f0 + f8n) + 23552 (f1 + f9 + f17 + · · ·+ f8n−7)

−3712 (f2 + f10 + f18 + · · ·+ f8n−6) + 41984 (f3 + f11 + f19 + · · ·+ f8n−5)

−18160 (f4 + f12 + f20 + · · ·+ f8n−4) + 41984 (f5 + f13 + f21 + · · ·+ f8n−3)

−3712(f6 + f14 + f22 + · · ·+ f8n−2) + 23552 (f7 + f15 + f23 + · · ·+ f8n−1)]

function num_integral = issastev(f,a,b,N)

%integral of f(x) over [a,b] using improved numerical integration with N segments

if nargin < 4, N = 100; end

if abs(b - a)<1e-12 | N <= 0, stevissa = 0; return; end

if mod(N,2) ~= 0, N = N + 1; end %make N even

h = (b - a)/N; x = a + [0:N]*h;

num_integral=(h/14175)*((3956*f(1))+(3956*f(N+1))+(7912*sum(f(9:8:N-7)))+...

(23552*sum(f(2:8:N-6)))+(23552*sum(f(8:8:N)))-(3712*sum(f(3:8:N-5)))-...

-(3712*sum(f(7:8:N-1)))+(41984*sum(f(4:8:N-4)))+...

(41984*sum(f(6:8:N-2)))-(18160*sum(f(5:8:N-3))));%(24)

3.2. Algorithm for the interpolant. To use an improved numerical integra-
tion to approximate functions with no close form solution, an algorithm is written
to enhances the clarification effectively and to reduce the computational difficul-
ties. The algorithm goes thus:
Data: f: The function to be approximated/interpolated
Ω: set of data
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θ: set of evaluation point
n: degree of approximation
Define εi in an interval [a, b]
ϕ(x): The orthogonal polynomial to be adopted
w(x): The weight function to be used, subject to ϕ(x)

for j = 1, · · · , m do

aj =
issastev(w(x)f(x)ϕj(x), a, b,N)∫ b

a w(x)ϕ2
j (x)dx

Γm(x) =
∑m

j=0 ajϕj(x)
end
for i = 1, · · · , N do
εi = a+ (i− 1)( b−aN )
error = Ei = |f(εi)− Γm(εi)|
end
plot the εi versus Ei
Find the maximum of Ei
plot the interpolant Γm(εi)

4. Illustrative Examples

Here,the least square approximation to functions with closed form solution and
no closed form solution will be illustrated, and their graphs will be shown to see
the accuracy of the improved method. We compute the maximum error Em and
compare with the existing methods, which are written as below:

(25) Em = max |f(xn)− Γ(xn)| , where xn = x0 + nh, h =
b− a
n

Example 4.1. Consider the function f(x) = ex over the interval [−1, 1] by means
of Gegenbauer polynomial Cαj (x)).

Using (3) and (6) for degree 4 (that is m = 4), taking α = 1
2 we have: Γj(x) =∑m

j=0 ajϕj(x),

aj =
j! [Γ(α)]2 (j + α)

π21−2αΓ(j + 2α)

∫ 1

−1
(1− x2)α−

1
2 f(x)Cαj (x))dx, j = 0, . . . , n

a0 = 1.1752, a1 = 1.1036, a2 = 0.3578, a3 = 0.0705, a4 = 0.0100. Hence

(26) Γ4(x) =
7x4

160
+

141x3

800
+

312x2

625
+

19957x

20000
+

20001

20000
.
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For degree 8, we obtain

(27)

Γ8(x) =
30784693422523315275

1208925819614629174706176
x8 +

3859583633195447157

18889465931478580854784
x7+

419598019973237337309

302231454903657293676544
x6 +

98372054130361889240979

11805916207174113034240000
x5+

126391449611296656555013

3022314549036572936765440
x4 +

393786402605375850040423

2361183241434822606848000
x3+

94418557377543578413859853

188894659314785808547840000
x2 +

11804686386727486114252629

11805916207174113034240000
x+

755593037928018677480316443

755578637259143234191360000

Figure 1 correspond to (27)

Table 2. Maximum errors at degree 4 (E4) with α = 1
2

f(x) E4

ex
2

0.0192

sin(ex
2
) 0.0808

ex
2

cos
(
x2
)

0.0196

x2ex
2

0.0718

Table 3. Maximum errors: LSA of functions via Gegenbauer
polynomials with m = 8

f(x) α = 1
2 α = 1 α = 3

2 α = 2

ex
2

9.22× 10−5 0.015 1.6× 10−4 9× 10−3

sin(ex
2
) 3.44× 10−3 2.8× 10−3 8.0× 10−3 8.8× 10−3

ex
2

cos(x2) 4.14× 10−5 3.0× 10−3 9.21× 10−4 8.5× 10−3

x2ex
2

9.81× 10−5 0.015 5.3× 10−4 7.0× 10−3
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Figure 1: Approximant and the exact for exp(x) and its corresponding error for
degree 8 with α = 1

2
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Figure 2: exp(x2): Comparision of the approximate solution and the exact for
degree 8 with α = 1

2

Discussion of Results: We take N = 96 in the numerical integration for all the
examples considered, to have enough sub-intervals. Table 3 is the product of the
errors obtained from interpolating examples which summarizes all the maximum
errors obtained for the examples considered via Gegenbauer polynomials. For
α = 1

2 perform better irrespective of the functions considered while the accuracy
of the errors at α = 1 is low compare to other values of the α considered. It
is visually obvious that, as the degree of approximation m increases the errors
improves (that’s the errors decline as m increases) as shown in Tables 2-3.

Conclusions: In this research work, least square approximation couple with
derived numerical integration are presented to solved some selected functions
and the tables of results shows the effectiveness and efficiency of the propose
scheme.
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