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Abstract

Smith-waterman algorithm (SWA) is widely used in computa-

tional biology. It is regarded as the most accurate sequence

alignment algorithm on state-of-the-art (SOA). However, the al-

gorithm is devoid of highspeed in term of performance. Evidence

showed that various platforms have been used to implement the

algorithm in order to improve the poor speed of operation, such

as systolic array (SA) implemented on Field Programmable Gate

Array (FPGA), acceleration on CPU-GPU architecture, accelera-

tion based on residue number system (RNS) and so on. Evidence

on SOA also showed that implementation of the algorithm on

FPGA platform recorded a better result than any other platform.

In this paper, Systolic array is proposed on SWA taking advan-

tages of inherent and unique properties of RNS and implemented

on FPGA (Spartan-III, 64-Bit version (Xilinx family)). The

metrics used for evaluation was processing time. The results were

finally compared with existing SOA systems. The SA method

vs RNS based implementation on FPGA gave a credible result

with 372.4 Giga Cell Update Per Second (GCUPS) with 875 PE.
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1. Introduction

The importance of processing speed of algorithm in computational biology can
not be over emphasized. SWA, a popular sequence alignment algorithm in bioin-
formatics which is relatively slower due to number of computations involved in
the search [5]. It is therefore, desirable to optimize its performance with regard
to computational time.
Maximum alignment between any two sequences is given by SWA below.

(1) M(i, j) =


0

M(i− 1, j − 1) + S(xi, yj) match/mismatch

Max M(i− 1, j) + g

M(i, j − 1) + g

At M(0, 0) = 0, M(0, j) = g×j and M(i, 0) = g× i, where 1 ≤ i ≤ n, 1 ≤ j ≤ m,
g is the penalty for gap insertion in any of the sequence and M(i, j) is the score
for match or mismatch, depending upon whether X(i) = Y (j) or X(i) 6= Y (j).
Systolic array is the rectangular arrangement of processors in an array ([11] &
[12]) so that data can flow synchronously between them. It is used to determine
the trace-back and simplifies alignment sequence by aligning one input sequence
against different sequences in the database at the same time. In computational
biology, the two types of alignments are shown in Figure 1. SW is used along
with systolic array to compute the best local alignment of two sequences while
RNS was also used to enhance the acceleration.
This paper focuses on designing a smart systolic cell using Residue Number Sys-
tem and carry out implementation on FPGA.

1.1. Technical Background and Related Work. The building block of DNA
are nucleotides which are adenine, cytosine, guanine and thymine abbreviated as
A, C, G and T respectively. Series of nucleotide collection are known as genome
which are stored as biological data in DNA database. The two popular alignment
methods on SOA are Local and Global alignments. Local alignment (Figure 1a)
searches some residue of DNA sequences [16].
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Figure 1a: Local alignment

Global alignment (Figure 1b) searches all residues in the sequences to obtain the
similarity between the DNA sequences.

Figure 1b: Global alignment
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Smith-Waterman algorithm (SWA) is a well-known dynamic algorithm popu-
larly used in computational biology and considered to be the best local sequence
alignment algorithm on SOA, [2]. Its main challenge is the low-speed process-
ing. Several approaches on SOA have been used to address the issue such as
systolic array application, Recursive variable expansion application, RNS appli-
cation, FPGA and so on. This approach intends to use Systolic array on SWA
and apply RNS as accelerator then implement on FPGA. In RNS the addition
of two large numbers can be computed by adding their corresponding residue
values in parallel, this approach is faster with less hardware requirement and free
of power consumption than conventional arithmetic [9]. Also in systolic array ar-
chitecture, parallel computation is used to determine each of the array elements.
Implementing these two methods on FPGA using SWA is our objective, to reduce
the time and space complexity in SWA. The algorithms address performance or
execution time; therefore, it is a trade-off between time and performance ([3] &
[4]).
In addition, SWA is a widely used algorithm in computational biology, many
researchers attempted to improve the speed of the algorithm on various platforms.
[8] used systolic array architecture to accelerate Smith-Waterman Algorithm with
cell design. The result of comparing implementation of systolic array architecture
with software implementation indicates that systolic array architecture speed up
to 652 times the software implementation, which is above twice the best case
on the-state-of-the-art. The proposal used 3 adders, 7 logic units per cell, 4
comparators. It was considered to be efficient in resource utilization because it
used between 3.69 and 6.36 less resource than other designs in literature.
[7] presented a paper on the efficient design of residue to binary converter, using
CRT on the moduli 2n, 22n +1, 2n +1, 2n−1. A comparative analysis was carried
out between the previous and the proposed design. The results showed that the
proposed design is having 15.02% time complexity less than the previous design.
Also in [13], systolic array architecture and pipe-lining techniques to achieve a
high-speed performance design. The comparative results analysis confirmed that
the architecture is 1.2 times faster compare to other FPGA designs.

2. Methodology

The method applied in the proposed system are itemized below:
SWA processing element cell design; SWA-RNS accelerator design; Forward con-
verter design for the three moduli; Processor design and Reverse converter design.

2.1. Step one: SWA Processing Element Cell Design. In designing systolic
cell, Processing Element (PE) is designed (Figure 4) which is the building block.
Each PE refers to number of hardware required to calculate the content of a cell.
It calculates the alignment of elements in a matrix simultaneously, when systolic
array is introduced to SWA, the full column is computed at the end of the final
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pass of the entire operation. The corresponding block diagram is illustrated in
Figure 5.
The performance of our systolic array is highly depended on how better our cell
is designed. Figure 5 shows the design of Mi,j matrix in a block diagram.
Comparison between two sequences (Qr and Db) of DNA nucleotides to be aligned
(Figure 5 and Figure 7) determine whether the value of match or mismatch will
be added (adder1) to the value in the diagonal cell (Mi−1,j−1). The output of the
addition is compared with 0 and the higher is given as Max1. Gap is added to
both values in the left cell and upper cell (adder2 and adder3 respectively) and
compares the results of the two additions where the higher one is Max2. Then
Max1 is converted to RNS followed by Max2. The maximum of the two values is
the optimal value for Mi,j . The block diagram in Figure 6 was implemented on
FPGA.

2.2. Step two: Design of SWA-RNS based accelerator. The moduli 22n+1−
1, 2n−1, 22n−1 set is proposed to be used in the design of SWA-RNS based accel-
erator to carry out addition of processing element (PE) in SWA and implement
in FPGA to accelerate the filling of all cells in the PE. Since RNS does not in-
volve in carry propagation, the results of addition, subtraction and multiplication
operations are very fast. This has been implemented in Digital Signal Processing
(DSP), Cryptography, Image processing and so on. In the light of this, RNS
takes full advantages of its carry free properties on SW algorithm to fill up the
cells in the table. This process basically goes through three stages (Figure 2) as
clearly itemized below:
1. The conversion of conventional number to residue number (FC) which pro-
duces a non-weighted integer number ([1], [14] & [15]).
2. Modular addition; this involves using of the proposed moduli set to carry out
addition on the variables of SW algorithm.
3. Reverse conversion which finally returns the numbers in RNS to binary/decimal
number.

2.3. Step three: Design of forward converter (FC) for moduli set {22n+1−
1, 2n−1, 22n− 1}. If X is a binary number and n is even integer and our moduli
set m = {22n+1 − 1, 2n−1, 22n − 1} such that m1 = 22n+1 − 1, m2 = 2n−1 and
m3 = 22n − 1.
M(m∗1m

∗
2m3) gives the dynamic range value as 25n−23n−23n−1+2n−1 for integer

X (5n-bit), where the residues set {r1, r2 and r3} is exclusively defined within
the range [0, 25n − 23n − 23n−1 + 2n−1 − 1] with ri = |X|mi.

(2) X = x5n−1x5n−2x5n−3 · · ·x3n−1x3n−2x3n−3 · · ·x2n−1 · · ·xnxn−1 · · ·x0
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(3) X =
5n−1∑
j=0

|xj2j |

(4) |X|m = |
5n−1∑
j=0

|xj2j |m|

(5) |X|mi = |
5n−1∑
j=0

|xj2j |mi|

X = x5n−1x5n−2x5n−3 · · ·x0.
In order to determine the residue r1, r2 and r3, X is partitioned into three blocks
P1, P2 and P3.

(6) X =


x3, 5n − 1x3, 5n − 2x3, 5n − 3x3, · · · , 3n :≡ 5n

x2, 3n − 1x2, 3n − 2x2, · · · , 2n :≡ 3n

x1, 2n − 1x1, n2x1, n3x1, · · · , 0 :≡ 2n

(7)



P1 =
5n−1∑
j=3n

|xj2j−3n|

P2 =

3n−1∑
j=2n

|xj2j−2n|

P3 =
2n−1∑
j=0

|xj2j |

X = P12
3n + P22

2n + P3

|X|m = |P12
3n + P22

2n + P3|m
|X|RNS(22n+1−1|2n−1|22n−1) = |P12

3n + P22
2n + P32

2n+1 − 1|, 2n−1, 22n − 1

= |P12
3n+P22

2n+P32
2n+1|+|P12

3n+P22
2n+P32

n−1|+|P12
3n+P22

2n+P32
2n−1|

2.3.1. Forward Converter for moduli 22n+1 − 1: For the bit number

22n+1 − 1 is 2n + 1 bit number which can also be represented by
r1 = x1,2nx1,2n−1x1,2n−2x1,2n−3 · · ·x1,0 ≡ 2n + 1
r1 = |X|m = |P12

3n + P22
2n + P3|m

= |X|22n+1−1 = |P12
3n + P22

2n + P3|22n+1−1
= |P12

3n|22n+1−1 + |P22
2n|22n+1−1 + |P32

2n+1 − 1|22n+1−1
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(8) = P1(2
n−1) + P2 + P3

2.3.2. Forward Converter for moduli 2n−1. The residue r2 with m2 = 2n−1 is
very simple to compute, it is (n − 1) left shift from last digit of binary number
X.

2.3.3. Forward Converter for moduli 22n−1. For the bit number 22n − 1 is a 2n
bit number which can also be represented by

r3 = x3,2n−2x3,2n−2x3,2n−3 · · ·x3,0 ≡ 2n− 1

r3 = |X|22n−1 = |P12
3n + P22

2n + P32
2n−1|22n−1

= |P12
3n|22n−1 + |P22

2n|22n−1 + |P32
n|22n−1

(9) = P1(2
n) + P2 + P3

where r1, r2 and r3 are the residues of |X|22n+1−1, |X|2n−1 and |X|22n−1 respec-
tively.
Forward Conversion with n = 2 in equation (3) gives the values of m1, m2 and
m3 as 31, 2 and 15 respectively. The dynamic range (DR) will be 930 and all
the values for match, mis-match and gap in equation (2) will be within 0 to 929
inclusive. It can be used to represent 10 bits where n is even. Implementation of
the forward conversion was carried out on Xilinx (Spartan-III: XC3S250) FPGA
device.
Forward conversion of the weighted number 42 with respect to the moduli set
{22n+1-1, 2n−1, 22n-1} with n = 2 is computed as follows:

r1 = 42|22n+1−1 = (101010)2|25−1

= 42|52 − 1⇒ (101010)2|52 − 1 partition I into three blocks of 5 bit

= (000000000101010)2|31

= 0 + 1 + 10|31

= 11|31 = 11

r2 = 42|2n−1
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which is (n− 1) left shift from last digit of binary number 101010 = 0

r3 = 42|22n−1 = (101010)2|24−1

= (101010)2|15
Partitioned into 3 blocks of 4 bits

42|24−1 = (101010)2|15

= (000000101010)2|15

= 0 + 2 + 10|15

= 12|15 = 12

Therefore, 11, 0, 12 are the residue number representation of the weighted number
42 with respect to moduli 31, 2, 15 respectively.

2.4. Step four: Processor Design. The next stage is the residue number
system processor design for the moduli set 22n+1 − 1, 2n−1, 22n − 1. The RTL
block diagram is displayed in Figure 2. RNS moduli addition is carried out using
{22n+1-1, 2n−1, 22n-1} on the SW algorithm.

2.4.1. Modulo-M Adder: The addition of two residues X and Y in Modulo-M
where (0≤X,Y <M) is defined as:

SUM = |X + Y |M =

 X + Y, if X + Y < M
X + Y − M, if X + Y > M

0, if X + Y = M
where M is either 31, 2 15
Modulo 31 adder:

SUM = |X + Y |31 =

 X + Y, if X + Y < 31
X + Y − M, if X + Y > 31

0, if X + Y = 31
Modulo 2 adder:

SUM = |X + Y |2 =

 X + Y, if X + Y < 2
X + Y − M, if X + Y > 2

0, if X + Y = 2
Modulo 15 adder:

SUM = |X + Y |15 =

 X + Y, if X + Y < 15
X + Y − M, if X + Y > 15

0, if X + Y = 15
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2.5. Step five: Reverse Converter (RC) Design. This is the last stage of the
design, it converts residue-based number to binary based number, which is based
on {22n+1-1, 2n−1, 22n-1} moduli set. It was implemented on FPGA using
Xilinx (Spartan-III; XC3S250) FPGA, which was used to convert the residue
(11, 0, 12) to the appropriate binary number.

2.5.1. SWA-RNS based architecture. The architecture involves three stages (Fig-
ure 2). At the FC stage, moduli conversion of all variables in SW algorithm is
performed and at the processing stage, moduli addition takes place. The addition
of gap value to the values in the upper cell and left side cell; addition of match or
mismatch values to the value in the diagonal. RC is the final stage; it converts
from RNS to decimal number.

Figure 2: RTL Internal block diagram of SWA-RNS based Processor

2.5.2. Linear Smith-Waterman Algorithm Computing Array (LSWCA). Figure
3 illustrates step in parallel computing of anti-diagonal in matrix M with a linear
processing element array. It starts with clock T1. After initialization, the query
sequence (Qr) is sent to the PE array, where each PE holds a character in its
register. The first character “A” in the database is sent into PE1 at clock of
T2 where it compares the input character with its content and computes the
alignment score. The previous entry is sent to PE2 at T3 clock. The characters
sequence in database (Db) flow through the PEs step by step. At the end, the
synchronous computation of matrix M is completed.
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If Db: ACTTGCA and Qr: CATG

Figure 3: RTL Internal block diagram of SWA-RNS based Processor

2.5.3. Linear Systolic Array Processing Element (LSAPE). Figure 5 is a systolic
array that computes alignments of two sequences Db and Qr. where
Db: ACTTGCA and Qr: CATG with scoring parameter of match= 2, mis-
match=1 and gap = -1.
The PE shows the nucleotides and the direction of maximum and optimal values.
The SW processing element (PE) data path in [12] was slightly modified. Each
PE executes the cell. The processing elements in Figure 4 are used to perform
dynamic matrix filling. In the design, there are four processing elements, two
maximum blocks, three adders and one block computing match/mismatch value
between the two nucleotides of the two sequences clearly illustrated in Figure
4. Diagram of the design and Optimized SW-RNS based PE are illustrated in
Figure 5 and Figure 7 respectively.
n a complete pass, the total number of clock cycle is equal to 1 less the sum of the
lengths of the two sequences. That is, the number of clock cycle in the complete
pass is (4 + 7 − 1) = 10 cycles. In the Optimized circuit designed (Figure 6),
the adders and RNS processors permit the PE to take full advantages of natural
properties of RNS like as carry-free, parallelism and fault tolerance.
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Figure 4: Circuit diagram of PE

Figure 5: A block diagram of systolic array architecture
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Figure 6: PE circuit design for SWA-RNS based optimization

Figure 7: RTL Internal block diagram for Optimized SWA-RNS based PE
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2.6. Summary. The metric often used to measure performance evaluation in
computational biology is the total number of cell update per second (CUPS). The
total number of hardware (such as flip-flop, look up table, comparator and so on)
needed to compute the element of a cell in SW matrix is termed as processing
element where slices are the combination of Flip-Flop (FF) and Look Up Table.
Our design with Xilinx (Spartan-III; XC3S250) FPGA stated 10,500 slices where
875 PEs are implemented with a 12 slices per PE at the frequency of 425.6 MHz
for the sequence alignment in Figure 6.
Performance Evaluation (CUPS) = Processing elements * Operating frequency
= 875 * 425.6
= 372400 (CUPS)
= 372.4 (GCUPS)
Comparison with others FPGA platform is shown in Table 1. The design is im-
plemented in a low-cost Spartan-III FPGA which is a low priced of Xilinx, this
is due to the fact that it does not contain many slices to realize a high-speed
performance.

Table 1: Comparison of Performance (systolic array)
Authors No. of

Slices
Slice
per PE

Total
No.
of PE

Operating
frequency
(MHZ)

Performance
evaluation
(GCUPS)

Implementation

[10] 55,000 110 500 80.0 40.0 Systolic array
and FPGA

[12] 75,968 1,187 64 57.94 3.71 Systolic array
and FPGA

[13] 23,136 96 241 98.7 23.79 Systolic array
and FPGA

[4] N.a N.a 131 193 214 Systolic array
and FPGA

[6] 11,264 22 512 200 102.4 Systolic array
and FPGA

Proposed
Design

10,500 12 875 425.6 372.4 Systolic array,
FPGA and
RNS

From Table 1 and Figure 8, the proposed design has the smallest slices as com-
pared to others. Since smaller core area can implement more PEs, the speed
performance is faster than any other design with higher GCUPS.
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Figure 8: Processing Elements vs Cell Update Per Seconds

Xilinx (Spartan-III; XC3S250) device is used so that the cost of acceleration
incurred is minimized through FPGA since this device contains limited numbers
of logic slices which inclined to the realization of high performance of our design.

Discussion of Results: This paper presents a first-rate systolic array-FPGA
model for SWA sequence alignment using a Residue Number System. Two se-
quences Qr and Db were aligned using Smith-Waterman algorithm. A cell for
systolic array was designed and implemented on Xilinx (Spartan-III; XC3S250)
FPGA device. Appropriate choice of RNS moduli set contributed immensely to
the realization of our objectives. The performance was computed in GCUPS. Per-
formance of our design was 372.4 GCUPS. This performance was compared with
other authors in the state-of-the-art with 40GCUPS, 3.71GCUPS, 23.79GCUPS,
102.4GCUPS and 214 GCUPS respectively. Furthermore; the proposed design
has the smallest slices which can implement more PEs. All the authors used sys-
tolic array architecture on FPGA. The main difference of our architecture with
other authors is that, RNS was introduced to accelerate the whole SWA. The
proposed design produced the best results in terms of less space consumption
and speed of execution as shown in Table 1. It is therefore, enough to say RNS is
a hopeful candidate in the acceleration and implementation of Smith-Waterman
Algorithm.
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