
Nigerian Journal of Mathematics and Applications
V olume 32, (2022), 117 − 135. P rinted by Unilorin press
©Nig. J. Math. Appl. http : //www.njmaman.com

Malicious PDF Detection Using Support Vector Machine

G. B. Balogun∗, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem
and I. D. Oladipo

Abstract

The aim of this study is to develop a system that can detect

and classify the Portable Document Format (PDF) as malware

or benign document based on its features, using the Support

Vector Machine (SVM) as an underlying model. Based on

feature extraction and the Support Vector Machine technique, a

method is proposed for efficiently detecting PDFs with harmful

payloads. It was proved in this study that by extracting a

wide range of feature sets, a robust PDF malware classifier can

be produced. By employing data sets with a total of 10,000

harmful and 10,000 benign documents, the classification rate

can reach up to 99 percent while retaining low false positive

rates of 0.2 percent or less for various classification parameters.

1. Introduction

Malware-bearing programs and documents continue to make headlines. Crimi-
nal organizations, companies, and governments frequently employ them to steal
money, exploit users, eavesdrop, and engage in other unlawful actions. Malicious
codes are frequently inserted or bundled within documents or programs that
appear legal; as a result, these documents are Trojan Documents because they
contain a dangerous payload in a seemingly appealing document that serves as a

Received: 01/04/2022, Accepted: 18/06/2022, Revised: 30/06/2022. ∗ Corresponding author.
2015 Mathematics Subject Classification. 94A13 & 94B60.
Keywords and phrases. Malware, Benign, JavaScript, Code, Support Vector Machine
Department of Computer Science, University of Ilorin, Ilorin, Nigeria
E-mails of the corresponding author: balogun.gb@unilorin.edu.ng
ORCID of the corresponding author: 0000-0003-3478-4854

117



118 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

malware distribution vector [16]. Many recent researches have shown that harm-
ful papers are routinely employed in highly socially engineered phishing assaults
carried out by groups of very clever, persistent, and targeted attackers with an
espionage purpose [2].
The Portable Document Format (PDF) file format was created in 1993 and has
been maintained by Adobe Software for the past years. Unfortunately, PDF has
become a popular conduit for user exploitation ranging from large-scale phishing
operations to targeted attacks due to its multiple capabilities and widespread
use. Despite recent breakthroughs in machine learning for malware detection,
antivirus firms still rely primarily on handwritten signatures to detect malicious
PDFs. Not only does this require a considerable number of human resources, but
it is also rarely useful in detecting unknown variants or zero-day assaults.
Because of its numerous features and extensive use, the Portable Document For-
mat (PDF) has become a popular conduit for user exploitation ranging from
large-scale phishing operations to targeted attacks. According to Charles and
Angeles (2012), the use of Portable Document Formats (PDFs) as a vehicle for
user exploitation, as well as the exploitation of vulnerabilities in client applica-
tions such as document viewers, has grown in popularity. Furthermore, social
engineering makes convincing consumers to view a malware-infected document
easier. Exploits operate by exploiting a weakness in a PDF reader application’s
API, allowing the attacker to execute code on the victim’s machine. This is typ-
ically performed through the use of JavaScript code contained in the file [15].
The PDF itself is not malicious in phishing attacks, but it attempts to persuade
the user to click on a malicious link. Such efforts have just lately been uncov-
ered and are, by definition, much more difficult to detect [7]. Every year, Adobe
Reader, the most popular software for viewing PDF files, is updated to fix dozens
of vulnerabilities in PDF documents [7].
JavaScript in PDF documents provides functionality and makes the document
interactive. Forms are an example of an extra feature, which often comprise
checkboxes, text inputs, action buttons, and other components that give the
page with application-like behavior [26]. According to [26] since Acrobat Reader
introduced JavaScript capabilities, even before the PDF format was included
as an Open Standard, making of JavaScript in PDF files to perform malicious
operations has been increasingly widespread.The hostile JavaScript code placed
in the document is sometimes just a means for downloading and executing a
specific instance of malware, or even a helpful code to exploit a specific weakness
in the reader, [26].
Although JavaScript can be disabled in Adobe Reader since at least version 6,
the risks of JavaScript code included in PDF format have historically been ad-
vised. Exemplary PDF files showing JavaScript flaws were supplied by David
Kierznowski. And even without the use of JavaScript andwithout depending on



Malicious PDF Detection Using Support Vector Machine 119

anything other than the PDF standards itself, Didier Stevens was able to execute
malicious script from a PDF file read by Adobe Reader in 2010 [26].
There are numerous approaches for detecting malicious documents [24] and de-
spite recent advances in machine learning for malware detection, antivirus com-
panies continue to rely heavily on handwritten signatures to detect malicious
PDFs [4]. This not only necessitates a large number of human resources, but it
is also rarely effective in detecting unknown variants or zero-day attacks. An-
other option is to run the files for dynamic analysis in a managed virtualized
environment. While this method generally increases the likelihood of identifying
potential malware, it also takes a long time and requires access to a sandbox
virtual environment. It also requires a human to define the detection rules based
on file behavior [7]. Another popular alternative to signature analysis is dynamic
document analysis, which involves observing the activity of the overall system or
collection of applications while the document is being accessed [24].
Sophisticated document-based malware assaults that target user weaknesses in
document-viewing client software or document structure are growing more wide-
spread, and as the number of people who utilize PDF files increases, so does the
need to restrict the repercussions of these malware-bearing documents. This
study presents a framework for detecting and predicting malware-infected or
malware-bearing PDF documents using Support Vector Machines (SVM). Us-
ing the Support Vector Classifier and preprocessing of PDF files, this study aims
for 99 percent accuracy with a much lower False Positive Rate (FPR). Using this
model, we present a mobile application that can classify any PDF file as benign
or malicious based on its features.

2. Literature Review

PDF Documents harboring malicious payload have been the topic of much in-
vestigation throughout the years. Many ways for malware detection in PDF
documents have been described in recent literature; past work on the detection
of document malware shares many ideas with the methods for detecting mal-
ware in documents. One of the most prevalent is the use of machine learning
approaches to enhance malware detection based on certain properties of the doc-
ument itself. The advantage of using machine learning is that it is particularly
effective against novel attacks or malware families that have never been seen be-
fore, as compared to traditional methods such as signature-based systems, which
are mostly effective against known malware.
Early static methods relying on n-gram collection and analysis of document con-
tent by [10] and [23] were never tested against modern PDF malware. The scope
of experimental evaluation in this work was relatively minimal. It included mali-
cious PDF documents created by the attacker as well as a small number of samples
(less than 300) from the out-of-date VXHeavens malware repository. They are



120 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

believed to be inadequate since they do not address several essential properties
of the PDF format, such as encoding, compression, and encryption, and may be
readily circumvented by contemporary PDF malware employing tactics similar
to those employed against traditional signature-based antivirus systems.
[25] demonstrated that detecting malicious word files using static analysis, n-
gram representation for document data, and dynamic analysis has great promise
but is limited by the amount of malcode. Whilst technique and file type vary, the
procedure’s overall goals are quite similar to those of PDF malware detection.
Recent malware detection research has used dynamic analysis to collect character-
istics, which implies that the features are retrieved while the binary is operating
in a simulated environment. [17] used engineered reader software and dynamic
analysis to collect structural characteristics from PDF texts for use in a machine-
learning-based classifier, specifically Hellinger distance decision trees, because of
their robustness in training data classing imbalances. Despite the fact that this
is a high-level technique, they were unable to exhibit high detection rates since
half of the malware test samples were classified as non-malware.
[27] conceived and implemented MDScan to overcome difficulties created by the
static analysis technique. They integrated static and dynamic analysis for ma-
licious PDF detection to improve detection. This feature, on the other hand,
advances toward reliable detection of malicious PDF documents, although the
emulation approach lengthens processing time.
The efficacy of detection while using machine learning approaches is based on nu-
merous areas of the documents or tactics for collecting information that allow the
algorithms to be much more effective. [12] suggested employing lexical analysis
of JavaScript code as the input for the machine learning model in their technique
(PJSCAN). For efficiency, the PJSCAN JavaScript extractor only looks for areas
where the PDF standard specifies the presence of JavaScript. Moreover, if the
JavaScript code has been designed to appear more like valid code, for example,
lexical analysis of the code might not have been effective enough for malware
identification if the malicious code is mixed with a large portion of genuine code,
or if JavaScript code is placed in an arbitrary position accessible via the PDF
JavaScript API and retrieved using an eval ()-like function call.
Another popular method for detecting malware in PDF documents is to use the
document information as inputs for the feature extraction used during prediction.
[24] developed their own extraction approach that depends heavily on the quality
of a document’s metadata in conjunction with the document’s ”structural prop-
erties.” They collected 202 features that are closely connected to the document
content, such as the number of pictures present, string size, and so on. Although
using metadata is an innovative strategy, this metadata is frequently forged by the
attacker. Therefore, it is critical to examine not just the conventional metadata
in hazardous documents, but also the counterfeited metadata.



Malicious PDF Detection Using Support Vector Machine 121

[13] were the first to apply logical structure to differentiate between malicious
and benign PDF files. The PDF Standard defines logical structure as a high-level
concept that organizes fundamental PDF building components into a function-
ing document. As a deep static technique, the [13] approach is less vulnerable
to PDF obfuscation and physical structure falsification, which afflict other ap-
proaches such as the [12] approach. The results of their research reveal that
harmful file features such as the inclusion of JavaScript and the minimum usage
of harmless information may be properly deduced from their logical structure.
Nonetheless, their technique’s detection performance was seen to be unreliable
in a real-world window experiment employing timestamped data. Its feature de-
scription created a blind area that attackers may exploit, as well as its large
feature set resulted in a more memory-intensive learning classifier.
[19] provide an example of an implementation that takes this method to its logical
end by using the PDF file structure as a detection vector. As a result, only at-
tributes relating to how PDF was created, such as unreferenced objects, disguised
streams, camouflaged filters, and so on, are considered. The basic idea behind
this approach is that when the structural features of a PDF document have been
altered, malware’s existence in the document is quite likely. In this instance, the
given system (O-Checker) does not use machine learning to assess whether or not
the document is flawed, but instead relies on predefined criteria (which suggests
malware).The disadvantage of this strategy is that it may fail to detect new PDF
viruses and does not perform well on PDF from countries other than Japan, but
it is a useful source of data for machine learning implementation.
[14] released Hidost, a machine learning-based malware detection system that
is an expansion of [13], to solve the shortcomings of [13]. Hidost, unlike their
prior work, is not just based on PDF malware detection but also works with a
variety of file formats. This method achieves these goals by constructing a model
of malicious and benign samples based on their logical structure and content. A
practical experiment with periodic retraining over numerous months was eval-
uated on a real-world data set comprising 407,037 malware and 32,567 benign.
Hidost is substantially less vulnerable to malware hidden in disguised areas of
PDF files than its predecessor.
To improve static analysis of PDF documents, [26] extracted metadata features
from documents such as the number of versions, size, edition time, author, and
structural features such as the presence of possible anomalies in the inner struc-
ture of the file as well as features relating to the way the document and its
components are organized. These extracted features are then tested on three
different machine learning algorithms: Support Vector Machine (SVM), Random
Forest (RF), and Neural Networks (in their case, Multi-layer Perceptron(MP))
to see which one performs the best. Multi-layer Perceptron and Random Forest
performed the best, while Support Vector Machine performed the worst. Despite



122 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

their high-level approach, the proposed system may not be able to categorize
PDF malware variations since the quantity of malicious and benign samples is
limited.
Every day, more research on harmful PDF detection is conducted. [8] work is
one of the most recent works in PDF malware detection, in which they propose
a new method of detecting malicious actions in PDF by using Convolutional
Neural Networks (CNN) built to take a byte series of non-executables as input
and predict if the provided series contains harmful code or not.
Because it is difficult to detect malicious activities within papers, the threat of
malicious documents is growing. As a result of the preceding instances of prob-
lems, the data for both the training and test data sets for this study were picked
from public malware sources, meaning that this system would be taught using
well-known malware samples and families. This situation involves focusing on
the primary advantage of machine learning (namely, Support Vector Machine)
applications, staying ahead of handwritten signature-based methods in the iden-
tification of emerging threats.
This study however, will focus on the issue of PDF malware evading detection.
This study does not rely on metadata information such as authors, creation dates,
and so on, which can be easily manipulated to prevent detection. However, in
order to detect malicious samples, this research will primarily focus on structural
aspects of PDF files.

3. Methodology

The PDF document type is widely used, and public data sets are freely avail-
ableThis study focuses on detecting fresh and genuine PDF malware by recog-
nizing malicious PDF documents while utilizing machine learning approaches,
namely Support Vector Machine.
In this study, common keyword strings in PDF documents are collected based
on the number of times they appear in both malicious and benign PDF docu-
ment samples to investigate how JavaScript code is exploited in reader programs.
Important keyword strings are picked, such as /JS and /JavaScript, which in-
dicate the presence of JavaScript, “/AA” and “/OpenAction”, which signal an
automated action to be executed instantly when the page or document is viewed,
“/ObjStm”, which counts the number of object streams, and so on.
Because most malware-infected PDF documents are known to contain JavaScript
and a high likelihood of launching operations. To increase detection rate and
reduce the chance of the detection system avoiding adversarial assaults, innocuous
PDF files containing various JavaScript and JavaScript activities are gathered and
retrieved in addition.



Malicious PDF Detection Using Support Vector Machine 123

The keyword string features that were chosen are then utilized to train the Sup-
port Vector Machine algorithm, resulting in a model that can readily recognize
and classify malicious PDF documents from benign ones.

3.1. Framework. The following described the framework.

Figure 1: Proposed Framework

3.2. Data Sources. At this point, the study’s goal is to collect a realistic data
set that will allow the classifier to detect real-world malware PDF documents.
For this investigation, PDF malware samples were gathered from a variety of
sources and PDF document format versions. The malware samples obtained for
this study include both old and new malware samples, with 70 percent of the
malware samples being new.
In terms of the sources from which samples were gathered, this study chose
them with the goal of representing the best feasible real-world scenario in mind.
This study gathered samples from email accounts that typically receive spam or
harmful attachments, as well as public malware repositories (VirusShare.com and
Contagiodump). The Contagiodump repository contains curated malware and
benign data sets targeted for signature research and testing, whereas VirusShare
solely gives malware samples.

3.3. Data Set. This study specified two different classes or sets for sample kinds
and classification:



124 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

3.3.1. Benign. These are samples with and without JavaScript retrieved from the
trusted Contagiodump public document repository; the samples do not have any
suspicious characteristics recognized by heuristics, such as obfuscation, suspicious
API calls, and so on. The total number of samples is 10,000. This study used a
set of antivirus vendors (through VirusTotal.com) to verify that the majority of
the samples in this collection had not been recognized as malware by any vendor.

3.3.2. Malicious. This collection comprises a total of 10,000 malware samples
gathered from the public sources Contagiodump and VirusShare. To guarantee
that all obtained samples are malware (albeit some are not completely confirmed),
they are checked on VirusTotal.com to ensure that the sample has been detected
as malware by at least three anti-virus vendors.

Figure 2: Benign PDF Files Features Dataset



Malicious PDF Detection Using Support Vector Machine 125

Figure 3: Malware PDF Files Features Dataset

3.4. Feature Extraction. There are various methods for extracting features
from a PDF document. To achieve our goal, this study opted to capture struc-
tural features from PDF files using PDFiD. PDFid is a Python utility written by
Didier Stevens to triage PDF documents; it can assist in distinguishing between
PDF documents that may be malicious and those that are most likely not. Al-
though PDFiD is not a parser, it searches for common keyword strings in PDF
documents and counts the number of instances of the common keywords. Figure
3.4 demonstrates the use of PDFiD.



126 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

Figure 4: PDFiD Usage in Feature Extraction

Figure 5: Extracting PDF Structural Features in Jupyter Notebook
Environment

3.5. Feature Selection. The goal of this study is to deliver high classification
quality and accuracy while maintaining a minimum False Positive Rate (FPR),
a large number of retrieved features were chosen to be processed. This approach
tries to be robust to variances in threats and vulnerabilities by concentrating on



Malicious PDF Detection Using Support Vector Machine 127

patterns in the structural characteristics of PDF documents. As a consequence,
the features chosen are intended to reduce dependency on specific strings from
document metadata, such as author metadata, author field string length, and so
on.
Similarly, keyword strings in structural features such as /Colors, filename, and
so on are intentionally removed since they are seldom used; adding such features
might result in better classification for known assaults but poor detection rates for
fresh attack paths. To select the best features that will produce a good prediction,
this study compares each feature with target variable to determine their level of
importance. Figure 3.6 and 3.7 depicts some of the features compared to select
important features where 0 represents benign and 1 represents malicious.

Figure 6: Relation Between JS and Target Variable



128 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

Figure 7: Relation Between OpenAction and Target Variable

3.6. Classification Methodology. The evaluated samples might be malicious
or benign, this study utilized a supervised learning technique to address the
problem as a binary classification problem. As a result, once the features were
retrieved, selected, and pre-processed, this study separated the total number of
recovered samples into two data sets: training and test.
After pre-processing the data set and removing null values, the total number of
recovered samples is 19,601. The recovered samples were separated into training
and test sets as follows:

(1) Training Set: consists of 70% of total recovered samples
(2) Test Set: consists of 30% of total recovered samples

Support Vector Machine (SVM) was chosen to optimize the sensitivity of the
classifier in terms of accuracy. SVM works by accepting data points and generat-
ing a hyperplane known as the decision boundary. SVM was chosen for its high
accuracy and lower computing complexity with a short execution time.

3.7. Performance Metrics. SVM’s performance was evaluated using four dis-
tinct metrics.

(1) Accuracy =
TP + TN

TP + TN + FP + FN

(2) Recall =
TP

TP + FN



Malicious PDF Detection Using Support Vector Machine 129

(3) Precision =
TP

TP + FP

(4) F1 − Score =
Precision−Recall

Precision + Recall

Here, TP denotes True Positives, TN denotes True Negatives, FP denotes False
Positives, and FN denotes False Negatives.

3.8. Planning Stage. Existing systems were investigated at this phase to gain
understanding of the topic area. The similarities and variations between cur-
rent systems were examined in order to identify the flaws in each. This phase
also includes the configuration of the programming environment, the installation
process, the selection of packages and libraries required for implementation, the
learning of recommended programming techniques, and the communication of
data between various libraries and languages.

3.8.1. Development Tools. This includes the programming languages used to cre-
ate software that can identify malware in PDF documents. The computer system
used during the implementation phase was a Lenovo ThinkPad X120e with 6GB
RAM, 120GB hard drive, and 1.5GHz AMD processor. This research was carried
out using the Linux operating system (Ubuntu 20.04 LTS).

3.8.2. Programming Languages. Python was used to carry out the machine learn-
ing experiment and deployment. Python is an open source programming lan-
guage with large and extensive libraries that supports Object-Oriented, Function-
Oriented, and Procedural programming paradigms. Python adheres to a core
grammatical guideline that makes code more readable and application mainte-
nance easier. This syntax allows you to communicate your thoughts without
writing any more code. This project is built with Python and numerous of its
libraries that are important to this issue.
JavaScript was used to create a client-side mobile application that uses the PDF
malware classifier. JavaScript is a scripting language that enables complicated
functionality to be implemented on web pages. Although JavaScript is well known
for its web performance, it is now also utilized in creating cross-platform mobile
applications with the help of a framework.

3.8.3. Libraries and Frameworks used. Pandas, Scikit-Learn, PDFiD, and Django
are some of the most popular Python libraries used in this project. The React
Native framework was used to create a client-side mobile PDF malware detecting
application.
Pandas is a Python package that offers data structures that are rapid, adaptable,
and expressive, making it easy and natural to deal with ”relational” or ”labeled”



130 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

data. Its objective is to serve as the basis for performing high-level actual data
analysis in Python. Pandas Data Frames are a form of data structure that has
been introduced to help with data manipulation. This tool facilitated viewing
data, creating data, choosing or changing columns and indexes, rearranging data,
and other tasks.
Sci-Kit Learn, also known as sklearn, is an open source Python library built on top
of Numpy (another Python library that supports large mathematical functions
to operate on arrays and matrices), SciPy (a Python library for scientific and
technical computing), and matplotlib (a Python library for plotting data) (a
data visualization library for Python). Sci-Kit Learn is a set of functions and
classes that make Machine Learning and Deep Learning easier to use. Because
the Support Vector Classifier is included in the Scki-Kit Learn package, Sci-Kit
Learn was used for classification and data pre-processing in this study.

3.8.4. PDFiD. is a Python program for triaging PDF documents. It can help
discern between PDF documents that may be harmful and those that aren’t.
Despite the fact that PDFiD is not a parser, it analyzes PDF documents for
frequent keyword strings and counts how many times they appear.

3.8.5. Django. is an open-source Python-based web framework that adheres to
the model–template–views design approach. In this study, the Django Framework
is used to deploy the machine learning model on a web server, making it available
from any device.

3.8.6. React Native (or RN). is a prominent JavaScript-based mobile app frame-
work that allows you to develop native-looking iOS and Android apps. You may
build applications for a range of platforms using the framework and the same
codebase.

3.9. Integrated Development Environment (IDE). This research employed
the Jupyter Notebook IDE and the Visual Studio Code text editor to achieve
its goals and objectives. Jupyter Notebook is an open-source web application
that allows you to interpret, edit, and exchange documents that contain scripts,
graphics, and narrative prose. In this study, Jupyter Notebook was used for
exploratory data analysis (EDA) and data visualization.
Visual Studio Code (also known as VSCode) is a text editor developed by Mi-
crosoft. Among the features are debugging, syntax highlighting, intelligent code
completion, snippets, code refactoring, and an embedded Git for version control.
This project’s codebase was created in VSCode, a text editor.

4. Result

The Accuracy, Recall, Precision, and F1-Score metrics are used to evaluate the
Support Vector Classifier’s experimental results.



Malicious PDF Detection Using Support Vector Machine 131

Figure 8: Result of SVM without hyper parameters

4.1. Result of SVM without hyper parameters. In the figure above, we can
see that the model is failing to meet the study’s objectives. Hyperparameters were
searched with GridSearchCV to find the optimal parameters for the SVC in order
to improve model accuracy.

Figure 9: Using GridSearchCV to Search for Best Estimators



132 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

4.2. Results of SVM with Hyper Parameters. The SVM performs effec-
tively using hyper parameters obtained with GridSearchCV, as can be shown in
the above result.

Figure 10: Results of SVM with Hyper Parameters

Figure 11: Dumping Model into Memory for Faster Access on the Webserver

Model optimization and model deployment on a Django App were investigated
in the figures above. The outcome of the machine learning process was dumped



Malicious PDF Detection Using Support Vector Machine 133

into a pickle (memory) and also loaded into the memory, as can be seen. The
model’s capacity to predict was available via an Application Program Interface
(API) so that it could be used on a variety of devices.

Output Design

Figure 12: Welcome Screen
Figure 13: Main Screen

Conclusions: This study successfully shows that by extracting a broad feature
set rather than depending on metadata information, a robust malware classifier
can be built which produces high True Positives (TP) while keeping a low False
Positive rate (FP). The results of 10,000 malicious and benign samples yielded a
classification rate of over 99 percent, with low false positive rates of less than 0.2
percent. By applying the model to the features of the new variant data, it was
also proved that the classifier is effective in identifying new versions of harmful
PDF. The result demonstrates that classification is based on a vast number of
characteristics, making escape much more difficult. The study also recognized
that eliminating metadata features of PDF files, the files could be easily manipu-
lated by attackers and reduced the likelihood of detection evasion and also make
the model more resilient against mimic attacks. It is therefore recommended that
the produced system should be used by individuals and organization to predict
their PDF files before making use of the them.



134 G. B. Balogun, P. F. Adinoyi, J. B. Awotunde, M. Abdulraheem and I. D. Oladipo

Acknowledgement. The authors are grateful to University of Ilorin for the
supports they received during the compilation of this work.

Competing interests: The manuscript was read and approved by all the au-
thors. They therefore declare that there is no conflicts of interest.

Funding: The authors received no financial support for the research, authorship,
and/or publication of this article.

References

[1] Acosta-Vargas P., Luján-Mora S. & Acosta T. (2017). Accessibility of Portable Doc-
ument Format in Education Repositories. Proceedings of the 2017 9th International Con-
ference on Education Technology and Computers- ICETC. 2017, 239 pages.

[2] Alperovitch D. & Firm M. (2011). “ Revealed: operation shady RAT,” An investigation
of targeted intrusions into more than 70 global companies, governments, and non-profit
organizations during the last five years. pp. 1-2.

[3] Arjun Guha, ClaudiuSaftoiu, and ShriramKrishnamurthi (2010) “ The Essence of
JavaScript,” European conference on Object-oriented programming, 2010, pp. 126-150.

[4] Beuhring, A., & Salous, K. (2014), “Beyond Blacklisting: Cyberdefense in the Era of
Advanced Persistent Threats,” IEEE Security & Privacy, 12 (??), pp.90–93.

[5] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992), “A training algorithm for optimal
margin classifiers,” Proceedings of the Fifth Annual Workshop on Computational Learning
Theory – COLT 1992, pp.144-152.

[6] Corona, I., Maiorca, D., Ariu, D., & Giacinto, G. (2014), “Lux0R: Detection of Ma-
licious PDF-embedded JavaScript code through Discriminant Analysis of API References,”
Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop - AISec
2014, pp.47-57.

[7] Fetteya, R., & Mansour R. (2020), “Detecting malicious PDF using CNN, ” Conference
Program Chairs - ICLR 2020.

[8] Jeong, Y.-S., Woo, J., & Kang, A. R. (2019), “Malware Detection on Byte Streams of
PDF Files Using Convolutional Neural Networks,” Security and Communication Networks,
2019, pp.1–9.

[9] Jordan, M. I., & Mitchell, T. M. (2015), “Machine learning: Trends, perspectives, and
prospects. Science,” 349(6245), pp.255–260.

[10] Li, W. J., Stolfo, S., Stavrou, A., Androulaki, E., & Keromytis, A. D. (2007), “A
Study of Malcode-Bearing Documents,” Lecture Notes in Computer Science, pp.231–250.

[11] Kramer, S., & Bradfield, J. C. (2009). “A general definition of malware”. Journal in
Computer Virology, 6 (??), pp.105–114.

[12] Laskov, P., &Šrndić, N. (2011), “Static detection of malicious JavaScript-bearing PDF
documents,” Proceedings of the 27th Annual Computer Security Applications Conference
on - ACSAC 2011, pp.373-382.

[13] Laskov, P. and Šrndić, N. (2013), “Detection of Malicious PDF Files Based on Hierar-
chical Document Structure,” Proceedings of the 20th Annual Network & Distributed System
Security Symposium - NDSS 2013.

[14] Laskov, P. and Srndic, N. (2016), “Hidost: a static machine-learning-based detector of
malicious files,” EURASIP Journal on Information Security volume 2016.



Malicious PDF Detection Using Support Vector Machine 135

[15] Maiorca, D., Biggio, B., & Giacinto, G. (2019).“Towards adversarial malware detec-
tion: Lessons learned from PDF-based attacks,” ACM Computing Surveys (CSUR), pp.
1-36.

[16] Mell, P., Kent, K., & Nusbaum, J. (2005),“Guide to malware incident prevention and
handling,” Gaithersburg, Maryland: US Department of Commerce, Technology Administra-
tion, National Institute of Standards and Technology, pp 800-83.

[17] Munson, M.A. and Cross, J.S. (2011), “Deep PDF parsing to extract features for de-
tecting embedded malware,” United States.

[18] Orozco-Arias, S., Piña, J. S., Tabares-Soto, R., Castillo-Ossa, L. F., Guyot, R.,
& Isaza, G. (2020), “Measuring Performance Metrics of Machine Learning Algorithms for
Detecting and Classifying Transposable Elements,” Processes.

[19] Otsubo Y, Mimura M, Tanaka H. (2016), “O-checker: Detection of Malicious Docu-
ments through Deviation from File Format Specifications,” Black Hat USA 2016.

[20] Santos, I., Devesa, J., Brezo, F., Nieves, J., & Bringas, P. G. (2013). OPEM: A
Static-Dynamic Approach for Machine-Learning-Based Malware Detection,” International
Joint Conference CISIS’12-ICEUTE´12-SOCO 2012 Special Sessions, pp.271–280.

[21] Selvaraj, K. and Gutierrez (2010), “The Rise of PDF Malware,” Symantec Security
Response 2010

[22] Singh, P., Tapaswi, S., & Gupta, S. (2020). ”Malware Detection in PDF and Office
Documents: A survey. Information Security Journal,”A Global Perspective, pp.1–20.

[23] Shafiq, M. Z., Khayam, S. A., & Farooq, M. (2008), “Embedded Malware Detection
Using Markov n-Grams,” Lecture Notes in Computer Science, pp.88–107.

[24] Smutz, C., & Stavrou, A. (2012), “Malicious PDF detection using metadata and struc-
tural features,” Proceedings of the 28th Annual Computer Security Applications Conference
on - ACSAC 2012.

[25] Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009) Malware detection using statis-
tical analysis of byte-level file content. Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics - CSI-KDD 2009, pp. 23-31.

[26] Torres J. and Santos S. D. L. (2018), ”Malicious PDF Documents Detection using
Machine Learning Techniques,” Proceedings of the 4th International Conference on Infor-
mationSystemsSecurity and Privacy - ICISSP 2018, pp.337-344.

[27] Tzermias, Z., Sykiotakis, G., Polychronakis, M., & Markatos, E. P. (2011), “Com-
bining static and dynamic analysis for the detection of malicious documents,” Proceedings
of the Fourth European Workshop on System Security - EUROSEC 2011.

[28] Wagner, C., Wagener, G., State, R., & Engel, T. (2009), “Malware analysis with
graph kernels and support vector machines,” 2009 4th International Conference on Mali-
cious and Unwanted Software (MALWARE). pp. 63-68.


	1. Introduction
	2. Literature Review
	3. Methodology
	3.1. Framework
	3.2. Data Sources
	3.3. Data Set
	3.4. Feature Extraction
	3.5. Feature Selection
	3.6. Classification Methodology
	3.7. Performance Metrics
	3.8. Planning Stage
	3.9. Integrated Development Environment (IDE)

	4. Result
	4.1. Result of SVM without hyper parameters
	4.2. Results of SVM with Hyper Parameters
	Conclusions:
	Acknowledgement
	Competing interests:
	Funding:

	References

