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Application of Laplace Beltrami Equation to Solve Vortex Flow in a
Closed Cylinder with Dirichlet Boundary Condition

S. O. Momoh1. S. A. Aniki2 and U. F. Amoo3

Abstract

The guiding equation here happens to be the Laplacian for

Cylinder, the equation was obtained by using the known defi-

nition of differential operator for Cylindrical coordinates (rho,

theta, z), it was then decomposed into three Partial Differential

Equation (PDE) by variable separable methods and solved

independently to obtain the general solution. Finally, contour

plots of the solution describing vortex movement in the interior

region of a closed Cylinder of arbitrary length l were obtained.

1. Introduction

In physics, a fluid is a liquid, gas, or other material that continually deforms
(flows) under an applied shear stress, or external force. Fluid, any liquid or gas
or generally any material that cannot sustain a tangential, or shearing force when
at rest and that undergoes a continuous change in shape when subjected to such
a stress. This continuous and irrecoverable change of position of one part of
the material relative to another part when under shear stress constitutes flow, a
characteristic property of fluids. In contrast, the shearing forces within an elastic
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solid, held in a twisted or flexed position, are maintained; the solid undergoes
no flow and can spring back to its original shape. Compressed fluids can spring
back to their original shape, too, but while compression is maintained, the forces
within the fluid and between the fluid and the container are not shear forces.
The fluid exerts an outward pressure, called hydrostatic pressure that is every-
where perpendicular to the surfaces of the container. Various simplifications, or
models, of fluids have been devised since the last quarter of the 18th century
to analyze fluid flow. The simplest model, called a perfect or ideal fluid, is one
that is unable to conduct heat or to offer drag on the walls of a tube or inter-
nal resistance to one portion flowing over another. Thus, a perfect fluid, even
while flowing, cannot sustain a tangential force; that is, it lacks viscosity and is
also referred to as an inviscid fluid. Some real fluids of low viscosity and heat
conductivity approach this behaviour. Fluids of which the viscosity or internal
friction, must be taken into account are called viscous fluids and are further dis-
tinguished as Newtonian fluids if the viscosity is constant for different rates of
shear and does not change with time. The viscosity of non-Newtonian fluids
either varies with the rate of shear or varies with time, even though the rate
of shear is constant. Fluids in a class in this last category that become thin-
ner and less viscous as they continue to be stirred are called thixotropic fluids
(https://www.britannica.com/science/fluid-physics. Accessed 8, August, 2021.)
Interactions of vortex structures play an important role in the understanding of
complex evolutions of fluid flow. Incompressible and inviscid flows with point-
wise vorticity distributions in two dimensional space, called point ’vortices’, have
been used as a theoretical model to describe such vortex interactions. The motion
of point vortices has been investigated well in unbounded planes with boundaries
as well as on a sphere owing to their physical relevance. On the other hand, it
is of a theoretical interest to investigate how geometric nature of curved surfaces
and the number of holes give rise to
different vortex interactions that are not observed in vortex dynamics in the plane
and on the sphere. In physics and engineering, fluid dynamics is a sub discipline
of fluid mechanics that describes flow of fluids (liquids and gases). It has sev-
eral sub discipline, including aerodynamics (the study of air and other gases in
motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics
has a wide range of applications, including calculating forces and moments on
aircraft, determining the mass flow rate of petroleum through pipelines, predict-
ing weather patterns, understanding nebulae in interstellar space and modelling
fission weapon detonation. Fluid dynamics offer a systematic structure which
underlines these practical discipline that embraces empirical and semi-empirical
laws derived from flow measurement and used to solve practical problems. The
solution to a fluid dynamics problem typically involves the calculation of various
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properties of the fluid, such as flow velocity, pressure, density and temperature
as function of space and time (Eckert M. 2006).

1.1. The Navier Stokes Equations. Navier stokes equation in fluid mechanics
is a partial differential equation that describes the flow of incompressible fluids.
The equation is a generalization of the equation devised by swiss mathematician
Leonhard Euler in the 18th century to describe the flow of incompressible and
frictionless fluids.

1.1.1. Incompressible Navier stokes Equations. The flow of fluid inside a given
container is governed by the solutions to the following differential equations:

∂

∂t

−→
U +

(−→
U .∇

)−→
U +

1

ρ
∇ P = −→g + V∆

−→
U

For ∇•
−→
U = 0

Here, t denotes time, U the velocity field, the density field, P the pressure field,
−→g the external forces such as gravity, V the viscocity, ∇ the gradient operator,
∇• the divergence operator and ∆ = ∇• ∇ the laplacian. Note that these are
4 differential equations at once. The first line is called the momentum equation
while the second one is called the incompressibility condition.

1.2. The Euler Equation. The Euler equation is just the Navier-stokes equa-
tion without viscosity which turns the second order partial differential equation
into a first order partial differential equation.

1.2.1. Incompressible Euler Equation. The motion of an incompressible, invicid
flow with uniform density inside a container without external forces is determined
by the following equations:
∆
∆t

−→
U = −∇ρ where ∇•

−→
U = 0

Vortices form in stirred fluids and may be observed in smoke rings, whirlpools
in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or
dust devil. Vortices are a major component of turbulent flow. the distribution
of velocity, vorticity (the curl of the flow velocity), as well as the concept of
circulation are used to characterize vortices. In most vortices, the fluid flow
velocity is greatest next to its axis and decreases in inverse proportion to the
distance from the axis. In the absence of external forces,viscous friction within
the fluid tends to organize the flow into a collection of irrational vortices, possibly
superimposed to larger scale flows, including larger scale vortices. Once formed,
vortices can move, stretch, twist, and interact in complex ways. A moving vortex
carries some angular and linear momentum, energy, and mass with it. (Shigeo,
2001), Vortex flow is used in fluid dynamics, fluid physics, and engineering fields
such as mechanical and chemical engineering, as well as powder technology, etc.
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The problem of describing point vortex motion dates back to the 19th century,
when Helmholtz pioneered two dimensional point vortex models and leonardo
da vinci created fascinating sketches of different types of vortex and eddy flows.
(Herik ,2007).
Interactions of vortex structures play an important role in the understanding of
complex evolutions of fluid flows. Incompressible and inviscid flows with point
wise vorticity distributions in two dimensional space, called point vortices, have
been used as a theoretical model to describe such vortex interactions. The motion
of point has been investigated well in unbounded planes with boundaries as well
as on a sphere owing to their physical relevance. On the other hand, it is of a
theoretical interest to investigate how geometric nature of curved surfaces and
the number of holes give rise to different vortex interactions that are not observed
in vortex dynamics in the plane and on the sphere.
The point vortex equation with which we are concerned here are most elegantly
stated by considering the two-dimensional flow plane to be the complex z-plane
and letting the vortices be represented by time dependent points Zα(t) in that
plane. Many current experimental results on vortex flows do not allow facile
explanation in terms of point vortex dynamics since effects of three-dimensionality
and/or viscosity are important. (Hassan., 2006). Vortex structures are defined
by their vorticity, the local rotation rate of fluid particles. They can be found
via the phenomenon known as boundary layer separation which can occur when
a fluid moves over a surface and experiences a rapid acceleration from the
fluid velocity to zero due to the no-slip condition. This rapid negative acceler-
ation creates a boundary layer which causes a local rotation of fluid at a wall
(i.e vorticity) which is referred to as the wall shear rate. The thickness of this
boundary layer is proportional to sqrtvt (where v is the free stream fluid ve-
locity and t is time). If the diameter or thickness of the vessel or fluid is less
than the boundary layer thickness then the boundary layer will not separate and
vortices will not form. However, when the boundary layer does grow beyond
this critical boundary layer thickness then separation will occur which generate
vortices. Another form of vortex formation on a boundary is when fluid flows
perpendicularly into a wall and creates a splash effect. The velocity streamlines
are immediately deflected and decelerated so that the boundary layer seperates
and forms a toroidal vortex ring (Kheradvar and Pedrizzetti, 2012).
In a stationary vortex, the typical streamline (a line that is everywhere tangent to
the flow velocity vector) is a closed loop surrounding the axis, and each vortex line
(a line that is everywhere tangent to the vorticity vector) is roughly parallel to
this axis. A surface that is everywhere tangent to both flow velocity and vorticity
is called a vortex tube. In general, vortex tubes are nested around the axis of
rotation. According to Helmholt’z theorems, a vortex line cannot start or end in
the fluid except momentarily, in non-steady flow, while the vortex is forming or
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dissipating. In general, vortex lines (in particular, the axis line) are either closed
loops or end at the boundary of the fluid. A whirlpool is an example of the
latter, namely a vortex in body of water whose axis ends at the free surface. As
long as the effects of viscosity and diffusion are negligible, the fluid in a moving
vortex is carried along with it. In particular, the fluid in the core (and matter
trapped by it) tends to remain in the core as the vortex moves about. This is a
consequence of Helmholtz’s second theorem. Thus vortices (unlike surface waves
and pressure waves) can transport mass, energy and momentum over considerable
distances compared to their size, with surprisingly little dispersion. Vortices
contain substantial energy in the circular motion of the fluid. In an ideal fluid, this
energy can never be dissipated and the vortex would persist forever. However, real
fluids exhibit viscosity and this dissipates energy very slowly from the core of the
vortex. It is only through dissipation of a vortex due to viscosity boundary of the
fluid. Flow around a circular cylinder is a classical topic in hydrodynamics that is
of fundamental importance to many scientific fields with numerous applications
( Zdravkorich, 1997).
A point vortex model for the formation of two re circulating, symmetric eddies
in the wake of a circular cylinder was first introduced by Foppl. He obtained
stationary solutions for a pair of vortices behind the cylinder in a uniform stream
and found that the centers of the middlies observed in the experiments lie on the
locus of such equilibria- now called foppl curve.
In this paper, the green’s function for laplace’s equation in a finite length cylinder
is considered. The Green’s function satisfies a homogeneous mixed boundary con-
dition (a linear combination of the potential and its normal derivative vanishes)
on the cylinder surface. The mixed boundary condition for laplace’s equation also
occurs in many physical problems. It occurs in the description of steady heat flow
in a body with heat radiation and convection to the surrounding medium (Luikov,
1968). Takashi (2016) carried out analysis and derive the evolution equation for
N-point vortices from Green’s function associated with the Laplace Beltrami op-
erator there, and he then formulated it as a Hamiltonian dynamical system with
the help of the symplectic geometry and the uniformization theorem. In this
paper we are concerned with the vortice problem and and structure of point vor-
tices by using the method of Green’s function for a cylinder. Therefore we employ
a systematic method using the Method of Separation of Variables to scrutinize
the Green function with Dirichlet boundary condition for the interior region of a
closed cylinder. Hence we use Green’s function to obtain a stream function us-
ing cylindrical coordinates which describe point vortice on a cylinder and for the
interior region of a cylinder using laplace betrami equation. We also use the vari-
ation of parameters to determine the number of point vortices in a cylinder. To
present laplacian in cylindrical coordinate (ρ, θ, z) by separating the solution in to
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three different partial differential equations (PDE). To characterize the Green’s
function obtained as the stream function for the region describing vortex flow.

2. Result Methodology

In this paper we present the basic material and method needed for the solution to
be feasible. In other to obtain stream function for a core rotating vortices in the
interior region of a cylindrical coordinates followed by the derivation of Green’s
function for a cylinder.

2.1. Laplace equation in cylindrical coordinates. Suppose that we wish to
solve laplace equation ∇2 φ = 0 within a cylindrical volume of radius α and
height l. We adopt the standard cylindrical coordinates (ρ, θ, z) as follows:

Figure 1: Circular cylindrical coordinates

Suppose that the curved portions of the bounding surface corresponds to r = α,
while the two at portions corresponds to z = 0 and z = l respectively. Suppose
finally that the boundary conditions (Dirichlet Boundary Condition) that are
imposed at the bounding surface are

φ (ρ, θ, 0) = 0, φ (α, θ, z) = 0, φ (ρ, θ, l) = φ(ρ, θ)

where φ(ρ, θ) is a given function. In other words, the potential is zero on the
curved and bottom surfaces of the cylinder and specified at the top surface.

x = ρcosφ , y = ρsinφ , z = z
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Since the inverse relations are

ρ =
√
x2 + y2, tanφ =

y

x
, Z = z

then,

tanφ =
y

x

Recall that tanφ = sinφ
cosφ , therefore sinφ

cosφ = y
x which implies that ρ = cosφ +sinφ.

Similarly, φ = cosφ − sinφ, some basis vectors depends on the coordinate
according to the rule

∂ρ

∂φ
= φ, and

∂φ

∂φ
= −ρ

An infinitesimal length dl is

dl =
√(

dρ2
)

+
(
ρdφ2

)
+
(
dz2
)

An infinitesimal volume element is;

dρ = ρdρdφdz

The gradient operator in cylindrical coordinates writes

∇ = ρ
∂

∂ρ
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On rearranging, we have

(2) =
1

ρ

∂

∂ρ

(
ρ
∂G

∂ρ

)
+

1

ρ2

∂2G

∂φ2
+

∂2G
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Therefore, we can write the laplacian operator as:

(3) ∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
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The laplacian operator in (10) above is known to be variable separable and con-
sidering ε as the source and ε1 as the observation point respectively and knowing
that a Green’s function for the Drichlet boundary condition (DBC) satisfies the
following equation:

(4) ∇2
?G
(
ε, ε1

)
= −4πδ(ε − ε1 )

where G
(
ε, ε1

)
= 0 we can then separate the corresponding Green’s function as

follows:

(5) G
(
ε, ε1

)
= G

(
ρ, ρ1 φ, φ1, z, z1

)
= P

(
ρ, ρ1

)
Q
(
φ, φ1

)
Z(, z, z1)

By substituting (2) and (5) into (4), we obtain

(6)
1

ρ

P 1

P
+

P 1

P
+

1

ρ2

Q1

Q
+
Z1

Z
= 0 , ρ 6= 0

Looking closely at (6), it is mathematically valid to assign constant number, say

λ2 to the ordinary differential equation (ODE), Z
1

Z , where λ ∈ N and −µ2 to the

ordinary differential equation Q
Q1 where µ ∈ N, we obtain the following system of

ordinary differential equation in (7), (8) and (??)
(7)
Z1− λ2Z = 0

(8) Q1 + µ1Q = 0

ρ2P 1 + ρP +
(
λ2ρ2 − µ2

)
P = 0 (??)

Figure 2: Geometry of a laplace problem for the interior region of a cylinder
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3. Main Results

The implementation of three equations in section 2 is carried out independently.
Using equation (7) as case for implementation, thus
We can rewrite the equation (7) as:

(9) Zzz
(
z, z1

)
− λ2Z

(
z, z1

)
= 0

The general solution of the last equation is:

(10) Zλ
(
z, z1

)
=

{
α1

(
z1
)

sinh (λz) + β1

(
z1
)
cosh (λz) 0 < z < z1 < 1

α2

(
z1
)

sinh (λz) + β2

(
z1
)
cosh (λz) 0 < z < z1 < 1

with four unknown coefficients to be determined. The coefficient β1

(
z1
)
cosh (λz)

will be elimiated applying the boundary condition Zλ
(
z, z1

)
|z=0 = 0 we see

that β
(
z1
)

= 0. On applying the second boundary condition Zλ
(
z, z1

)
|z=l =

0. We have

(11) α2

(
z1
)

= −coth(λl)β2

(
z1
)

Also by the continuity theorem which states that Green’s function is continuous
around the source point, continuity is applicable to the components of the Green’s
function hence

(12) Zλ
(
z, z1

)
|z=z1+ = Zλ

(
z, z1

)
|z=z1−

With this fact we have
(13)

α1

(
z1
)

= β2

(
z1
)(cosh

(
λz1
)

sinh (λz1)
− cosh (λl)

sinh (λl)

)
= β2

(
z1
)

(
sinh

(
λ
(
l − z1

))
sinh (lz1) sinh (λl)

)

In general Green’s function between the source and observation points is known
to be symmetric. Thus, same holds for its components, hence we can write

(14) G?

(
ε, ε1

)
= G?

(
ε, ε1

)
As a result of this, we apply this rule to the system of solutions, by equating
one solution in the system with the other one with its primed and unprimed
parameters exchanged, as follows:

(15) β2

(
z1
)( sinh

(
λ
(
l − z1

))
sinh(λz1) sinh (λl)

)
= (

sinh (λ (l − z))
sinh (λz) sinh (λl)

)β2 (z)

Above equation (15) implies

(16) β2 (z) sinh(λz1) = β2

(
z1
)

sinh (λz)

and thus

(17) β2 (ε) sinh(λε1) = β2

(
ε1
)

sinh (λε)
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Substituting (11), (13) and (17) into (10) we have the solution for the ordinary
differential equation in (6) as:

(18) Zλ
(
z, z1

)
=

{
sinh(λz)sinh(λ(l−z)) 0<z<z1<1

sinh(λl)
sinh(λ(l−z))sinh(λz1) 0<z<z1<1

sinh(λl)

This gives us a component of the Green’s function which equally describes the
component of the vortex flows on the interior region of the closed cylinder of
length. To get the contour plots of the flow at different points on l, we have to
look at the parameters, l and z in a form of angles that the point of the flow
makes with positive z−axis on l with a maximum 2π since l is just a straight
line.

Figure 3a: Angle of rotation at length 0 < z < z1 < l of the cylinder
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Figure 3b: Angle of rotation at length 0 < z < z1 < l of the cylinder

Figure 3c: Angle of rotation at length 0 < z < z1 < l of the cylinder

Figures 1, 2, 3a, 3b and 3c show the contour plots of the component of the stream
function, showing component of the vortex flow in the interior region of a closed
Cylinder at various points on l where 0 < z < z1 < l.

Conclusions: The paper show that vortex flow is an helical motion or circular
spiral (such as gas) for fluid. We derived the laplacian equation for a cylinder
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and presented its solution in the form of a Green’s function for such flow (vortex)
on the interior region of the closed cylinder and then characterised the solution
as the stream function for such flow (vortex) on the interior region of the closed
cylinder. The contour plots shown in figures (9), (10), (11) describe the nature
of the vortex flow when the angle of rotation is taking at various points on the
length l of the cylinder. This clearly underline the result obtained.
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