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Error Estimates of the Fully Discrete Solution of Linearized
Stochastic Cahn-Hilliard Equation

1Ignatius N. NJOSEH and 2H. I. OJARIKRE

Abstract

We studied the finite element analysis of the linearized Stochastic

Cahn-Hilliard equation. The Galerkin finite element method

was used to discretize the given equation. Based on the finite

elements, the completely discrete approximation scheme was

formulated by applying the backward Euler difference approxi-

mation in time. The completely discrete solution was interpreted

in terms of analytic semigroup and converted to variation of

constant formula using the rational functions definition to estab-

lish strong convergence rate for the completely discrete scheme.

1. Introduction

Stochastic Partial Differential Equations (SPDEs) are important tools in the
modelling of complex phenomena and real life problems, such as, turbulence
and pattern formation and to predict trends in the stock market or in weather,
ground water flow, chemical reactions and heat emissions etc. They are also used
for biological modelling and within the fields of medicine and engineering. The
study of qualitative properties of SPDEs, involving the super-process or simple
variants of the heat equation, is largely exhausted. Left to itself, SPDE might
have become a dying field. Luckily, scientists are jumping into the field with a
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vengeance, and SPDE is expanding chaotically in all directions. We believe that
the sciences will continue to provide important SPDE models and conjectures
since scientists seem to have finally grasped the importance of SPDE models.

The purpose of this paper is to present numerical schemes and error estimates
of the solution of Stochastic Cahn-Hilliard equation

(1)

ẏ +A2y +Af(y) = Ẇ , in Ω× [0, T ],

y(0) = y0 in Ω

∂y

∂n
=
∂∆y

∂y
= 0 on ∂Ω× [0, T ].

where f = 0 and y(t) a random process that takes values in L2(Ω), Ω is a bounded
domain in Rd, d ≤ 3 with a sufficiently smooth boundary ∂Ω. ∆ is the Laplacian
operator andW (t) is a standard Brownian motion defined on a filtered probability
space (Ω, F, {Ft}t≥0 , P ).

Equation (1) is a fourth order heat equation used to model a complicated phase
separation and Coarsening phenomena in a melted alloy that is quenched to a
temperature at which only two different concentration phases can exist stably.
This was developed by Cahn and Hilliard in 1958. (For more physical background
on this equation, see [1]). The existence and uniqueness of the solution of equation
(1) has been a subject of study for a long time (cf [2] and [3] and the references
therein). Finite element approximations of the deterministic form of equation (1)
was analyzed in the L2-norms in [4] and in [5] and [6], Cardon-Weber studied the
explicit and implicit discretization schemes of equation (1) in dimensions d ≤ 2.

So much work has been done on the finite element analysis of the deterministic
version of equation (1) but a little literature is available for the stochastic version.
We shall now review some available literature. [5] and [6] established existence
and uniqueness of a function-valued solution of the stochastic Cahn-Hilliard equa-
tion (1) in dimension d ≤ 3. Here, the driving noise is the space-time white noise
with non-linear diffusion coefficient. The author observed that the polynomial
growth of the drift term made her require the diffusion coefficient to be bounded,
and proved convergence in probability (respectively in Lp with a given rate of a
localized version) of the scheme, uniformly in space and time, that is, under some
assumptions.

In [7], the author considered the finite element method for a stochastic para-
bolic partial differential equation of second order forced by additive space-time
noise in the multi-dimensional case in the Hilbert space, where y(t) is a H-valued
random process. The author set up a finite element analysis and applied the
semigroup property generated by A to obtain optimal strong convergence esti-
mates in the L2 and H−1 norms with respect to spatial variable. For more on
this, see [8] and [9] and the references therein.
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Also Njoseh and Ayoola in [10] discussed the finite element method for nonlin-
ear Stochastic Cahn-Hilliard equation (1) (i.e., f(y) = y3 + y) and proved error
estimates for both the semidiscrete and fully discrete solutions. Here the fully
discrete scheme was obtained by applying the backward Euler time stepping fi-
nite difference method. For more literature, see the works of [12], [13] and [14]
and the references therein.

We shall therefore be analyzing the error estimates of the solution of the lin-
earized equation ( i.e., with f = 0)

(2)

ẏ +A2y = Ẇ , in Ω× [0, T ],

y(0) = y0 in Ω

∂y

∂n
=
∂∆y

∂y
= 0 on ∂Ω× [0, T ].

using the finite element method. Our main aim here is to derive the semi-discrete
and fully discrete schemes and obtain the error estimates using the analytic semi-
group properties while following the methods adopted in the works of [7], [10]
and [11]. The outline of this paper is as follows: In section 2, we explore the
theoretical framework within which we will be working. We will particularly look
at the Hilbert space. In section 3, we discuss the semi-discrete scheme while fully
discrete scheme and error estimates for the problem under review are discussed
in sections 4.

2. Theoretical Framework

Let H = L2(Ω) with inner product (u, v) =
∫

Ω uvdx and corresponding norm

‖.‖ = (., .)
1
2 . Furthermore, let A = −∆ with domain D(A) = H1

0 ∩H4 where the
spaces H4 and H1

0 are as defined below.
We define Hs = Hs(Ω) to be the space of all functions whose weak partial
derivatives of order ≤ s belong to L2, i.e.,

Hs = {v ∈ L2 : Dαv ∈ L2, |α| ≤ s}

Furthermore, we define H1 = H1(Ω) as

H1 =
{
v ∈ H1 : v = 0 on Γ = ∂Ω

}
Define the space Hs(Ω) = D(A

s
2 ), with norm |v|s =

∥∥∥A s
2 v
∥∥∥ for any s ∈ R and

the Parseval’s relation as

|v|2s =
∥∥∥A s

2 v
∥∥∥2

=

∞∑
j=1

λ2
j v̂

2
j

where λj are eigenvalues of A and v̂j = (v, φj) with φj an orthonormal basis of
corresponding eigenfunctions.
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For any Hilbert space, H, we define

L2(Ω, H) =

{
v : E ‖v‖2H =

∫
Ω
‖v(w)‖2H dP (w) <∞

}
with norm ‖v‖L2(Ω,H) = (E ‖v‖2H)

1
2 . Hence, let ψ be a Hibert-Schmidt operator

from H to H with the space HS(H,H), we say that ψ(s) ∈ HS(H,H), if

‖ψ(s)‖HS =

 ∞∑
j=1

‖ψ(s)φj‖2
 1

2

<∞

where H = L2 and {φj} is an arbitrary orthonormal basis for H.

If ψ(s) ∈ HS(H,H), then the stochastic integral
∫ t

0 ψ(s)dW (s) is well defined
and we have the Ito Isometry

E

∥∥∥∥∫ t

0
ψ(s)dW (s)

∥∥∥∥2

=

∫ t

0
‖Eψ(s)‖2HS dW (s)

where E stands for expectation.
We can write the Wiener process W (s) with covariance operator Q in terms of
its Fourier series as

W (t) =
∞∑
i=1

γ
1
2
i ξiβi(t)

Here, βi(t) is a sequence of real-valued independence identically distributed (iid)
Brownian motions and {γj , ej} is the eigensystem for Q. The operator Q is self-
adjoint, positive definite and linear. Moreover, Q is defined such that it has the
same eigenfunctions as A = −∆. The relationship between the eigenvalues of Q
and A is given by the equation

γj = λ−∞j

where α ∈ R

3. Semi-discrete Scheme

With the definition of A and D(A) we can write equation (2) as

(3) yt +A2y = dW, t > 0, y(0) = y0

having a mild solution of

ŷ = E(t)y0 +

∫ t

0
E(t− s)dŴ (s)

Let Sh be a family of finite element spaces, where Sh consists of continuous
piecewise polynomials of degree r ≤ 2 with respect to the triangulation Th of
Ω. We shall also assume that

{
Sh ⊂ H1

0 (Ω)
}

. According to the standard finite
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element method, the semi-discrete problem of equation (3) is to find yh(t) ∈ Sh,
such that

(4) yh,t +A2
hyh = dW, t > 0, yh(0) = Phy0

The mild solution of equation (4) is given as

ŷh = Eh(t)Phy0 +

∫ t

0
PhEh(t− s)dŴ (s)

where the operator Ah : Ṡh → Ṡh (the discrete Laplacian).
The error bound in the semi-discretization scheme is as follows;

Theorem 3.1. [10] Let yh be the spatially semi-discrete approximate solution
of order r and with mesh parameter h, and let the initial approximation be
chosen as the L2-projection of the exact initial value y0. Then if for r ≤ 2 and∥∥∥A (γ−1)

2

∥∥∥
HS

<∞, for γ ∈ [0, 4] we have

‖yh(t)− y(t)‖L2
≤ Chγ

(
‖y0‖L2(Ω,Hγ) +

∥∥∥A (γ−1)
2

∥∥∥
HS

)
, 0 ≤ t ≤ T

4. Main Results

4.1. Fully Discrete Approximation. We now formulate the fully discrete ap-
proximation of equation (2) based on the backward Euler method in time. Here
we replace the time derivative by a backward difference quotient

∂tYh =
(
Y n−Y n−1

k

)
where k is the time step and Y n is the approximation to y at

time tn = nk, n = 1, 2, . . ..
For equation (2), we pose the fully discrete approximation problem as follows:
Find yh ∈ Yh such that

yh,t +A2
hyh = dW, t > 0, yh(0) = Phy0

and applying the implicit Euler method, for k = ∆t, tn = nt, ∆Wn = W (tn) −
W (tn−1) we have for Y n ∈ Sh, Y 0 = Phy0;

(5)

(
Y n − Y n−1

k

)
+A2

hY
n = Ph

(
Ŵ (tn)− Ŵ (tn−1)

k

)
, tn > 0

=⇒ Y n − Y n−1 + kA2
hY

n = Ph∆Ŵn

(6) Y n − Y n−1 + kA2
hY

n = Ph

(
Ŵ (tn)− Ŵ (tn−1)

)
and the variation of constants formula for

Y (tn) = E(tn)Y 0 −
∫ tn

0
E(tn − s)PhdW (s)
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becomes
Y n = EkhY

n−1 − EkhPh∆Wn

(7) Y n = EkhPhy0 −
n∑
j=1

En−j+1
kh Ph∆W j

where Ekh =
(
1 + kA2

h

)−1
.

4.2. Error Estimates. We now recall the following estimate from [7] which we
shall call a lemma.

Lemma 4.1. Let Bn(t) = EnkhPh − En(t), then for 0 ≤ γ ≤ 4, ‖Bnv‖ ≤
C
(
k
γ
2

+hγ
)
|v|γ−1 andk n∑

j=1

‖Bjv‖2
 1

2

‖Bnv‖L2([0,T ],H) ≤ C
(
k
γ
2

+hγ
)
|v|γ−1

where |v|γ =
∥∥∥A γ

2e v
∥∥∥ for γ ∈ R.

The error estimate for the fully discrete approximation is given below.

Theorem 4.1. Let y be the solution of equation (2) and the solution of equation

(6). If
∥∥∥A γ−1

2

∥∥∥
HS

<∞ for some 0 ≤ γ ≤ 4, then

(8) ‖en‖L2(Ω,H) = ‖Y n − y(tn)‖ ≤ C
(
k
γ
2 + hγ

)(
‖y0‖L2(Ω,H) +

∥∥∥A γ−1
2

∥∥∥
HS

)
If W (t) is a Wiener process with covariance operator Q = I, we have

(9) ‖en‖L2(Ω,H) ≤ C
(
k
γ
2 + hγ

)(
1 + ‖y0‖L2(Ω,H)

)
for 0 ≤ γ ≤ 2

Proof
Let en = Y n − y(tn) and Bn(t) = EnkhPh − E(tn)

where Y n = EnkhPhy0 +
∑n

j=1

∫
En−j+1
kh PhdŴ (s) with Enkh = r

(
kA2

h

)n
and

y(tn) = E(tn)y0 +
∫ tn

0 E(tn − s)dŴ (s), then

en = EnkhPhy0 +
n∑
j=1

∫ tj

tj−1

En−j+1
kh PhdŴ (s)− E(tn)y0 +

∫ tn

0
E(tn − s)dŴ (s)
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en = EnkhPhy0 − E(tn)y0︸ ︷︷ ︸+
n∑
j=1

∫ tj

tj−1

Bn−j+1dŴ (s)︸ ︷︷ ︸+
n∑
j=1

∫ tj

tj−1

(E(tn − tj−1)− E(tn − s)) dŴ (s)︸ ︷︷ ︸
I II III

Thus,

‖en‖ ≤ C (‖I‖+ ‖II‖+ ‖III‖)

For I, we have from Lemma 4.1 where v = y0

‖I‖ = ‖Bnv‖ ≤ C
(
k
γ
2 + hγ

)
|y0|γ

≤ C
(
k
γ
2 + hγ

)
‖y0‖L2(Ω,Hγ)

For II, we have, by the Ito Isometry property

E ‖II‖2L2(Ω,H) = E

∥∥∥∥∥∥
n∑
j=1

∫ tj

tj−1

Bn−j+1dŴ (s)

∥∥∥∥∥∥
2

≤
n∑
j=1

∫ tj

tj−1

‖Bn−j+1‖2 ds

=
∞∑
j=1

k n∑
j=1

‖Bn−j+1φi‖2HS


= k

∞∑
j=1

n∑
j=1

‖Bn−j+1φi‖2HS , where {φi} is as in section (2).

≤ C
∞∑
i=1

(
k
γ
2 + hγ

)2
|φi|2γ−1

≤ C
(
kγ + h2γ

) ∞∑
i=1

|φi|2γ−1

= C
(
kγ + h2γ

) ∞∑
i=1

∥∥∥A(γ−1)/2φi

∥∥∥2
by Parseval’s relation

= C
(
kγ + h2γ

) ∥∥∥A(γ−1)/2φi

∥∥∥2

L2
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For III, we have, by the Ito Isometry property again

E ‖III‖2L2
= E

∥∥∥∥∥∥
n∑
j=1

∫ tj

tj−1

(E(tn − tj−1)− E(tn − s)) dŴ (s)

∥∥∥∥∥∥
2

≤
n∑
j=1

∫ tj

tj−1

‖E(tn − tj−1)− E(tn − s)‖2HSds

=

n∑
j=1

∫ tj

tj−1

‖E(tn − s)E(s− tj−1)− I‖2HSds

=
n∑
j=1

∫ tj

tj−1

∥∥∥Aγ/2E(tn − s)A−γ/2(I − E(s− tj−1))
∥∥∥2

HS
ds

≤
n∑
j=1

∫ tj

tj−1

∥∥∥Aγ/2E(tn − s)
∥∥∥2

HS

∥∥∥A−γ/2(I − E(s− tj−1))
∥∥∥2
ds

≤ Ckγ
n∑
j=1

∫ tj

tj−1

∥∥∥Aγ/2E(tn − s)
∥∥∥2

HS
ds

≤ Ckγ
∥∥∥A(γ−1)/2

∥∥∥2

HS

n∑
j=1

∫ tj

tj−1

∥∥∥A1/2E(tn − s)
∥∥∥2
ds

≤ Ck2γ
∥∥∥A(γ−1)/2

∥∥∥2

which concludes the proof.

5. Conclusion

The strong convergence rate in both the spatial and time steps can be com-
puted. This can be done if the finite element solution computed on a very fine
mesh is considered as the true solution and the finite element solutions computed
on the less fine meshes are compared with this numerically obtained true solution.
This is due to the fact that the true solution to the SPDE (2) itself is a random
process and is not known explicitly.

6. Analysis of Strong Convergence rate in k and h

The main purpose of the numerical experiment is to examine the convergence
rate of the numerical method. The numerical experiment is performed on equa-
tion (2) with the following functions:
T = 1, σ ≡ I, f(x) = 0, y0(x) = cosx where x = (x1, x2) ∈ Ω, Ω is the unit
square R2.
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In the numerical experiment, the strong convergence rate in both the spatial
and time steps in equation (2) are computed. For the experimental setup for the
strong convergence rate k, we first compute the true solution y on the mesh where
h = 2−8 and k = 2−8 , which we consider as a fine mesh due to the lengthy run
time of the solver. Then, we fix h = 2−8 and compute the approximated solution
Y k for different time partitions, in particular, for k = 2−7, 2−6, 2−5, 2−4, 2−3 re-
spectively.
Finally, we compute the

∥∥Y k − y
∥∥
L2(Ω,H)

for every time partition. To do this,

we show that Theorem 4.1 implies that the order of strong convergence of our

method should be around O(k
γ
2 + hγ). If h is sufficiently small, such that the

error estimates are dominated by k, the predicted rate of convergence should be

O(k
γ
2 ). This gives us (see [9])

(10)
Uk

Uk+1
≈
(

ki
ki+1

) γ
2

= 2
γ
2

and from that we obtain

(11) γ =
2

log 2
log

(
Uk

Uk+1

)
In the same way, when k is very small, the error is assumed to be dominated by
h and the rate of convergence should be O(hγ). Similarly to (11), we obtain,

(12) γ =
2

log 2
log

(
Uh

Uh+1

)
Therefore, using (10) and (11), we obtain the results for γ as shown in table (6.1)

h k γ k h γ
2−8 2−7 0.7658 2−8 2−7 0.8109
2−8 2−6 0.5624 2−8 2−6 0.4075
2−8 2−5 0.4456 2−8 2−5 0.3816
2−8 2−4 0.7658 2−8 2−4 0.4397

Table 6.1: Convergence rate in k and h.
The table shows that the average of the γ is around the expected value of 1

2 , which
indicates that the solution for the numerical estimate of the strong convergence
rate is effective.
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