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Variation Iteration Decomposition Method for the Numerical
Solution of Integro-Differential Equations

Ignatius N. Njoseh1∗ , Ebimene J. Mamadu2

Abstract

This paper seeks the numerical solution of integro-differential
equations via the variation iteration decomposition method
(VIDM). The mode of convergence of this method as applied to
integro-differential equations is determined by the step size pa-
rameter, h. The approximate solution converges for h ≤ 105+n

where n is the number of iterations. Similarly, the method re-
quires no discretization, linearization or perturbation. We apply
the method in the stimulation of numerical examples for the ap-
proximate solution of linear and nonlinear Volterra and Fredholm
integro-differential equations via maple 18 software. The resulting
numerical evidences show the method is reliable, effective and ef-
ficient for the numerical solution of integro-differential equations.

1. Introduction

We consider the standard integro-differential equation of the form

(1) y(n)(x) = f(x) + λ

∫ g(x)

r(x)
k(x, s)u(s)ds,

where r(x) and g(x) are the limits of integration, λ is a constant parameter and
k(x, s)is the nucleus of the integral. If the limits of integration are constants,
then we have Fredholm integro-differential equation. Similarly, if the limit g(x)
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is replaced with a variable of integration x, then it is called Volterra integro-
differential equation. In this paper, we seek the numerical solution of integro-
differential equations via the variation iteration decomposition method (VIDM).
The mode of convergence of this method as applied to integro-differential equa-
tions is determined by the step size parameter, h. The approximate solution
converges for h ≤ 105+n where n is the number of iterations.
In recent years, there has been growing interest in the integro-differential equa-
tions due to its applicability in the mathematical modelling of electric circuit, sto-
chastic processes, damping process, exhibitory and inhibitory interactions, etc.
Several numerical methods for solving linear and nonlinear integro-differential
equations have been given and available in literature. Hossein [1] used Tau
method for an error estimation of the integro-differential equations. Biazer [2]
solved systems of integro-differential equations by the Adomian decomposition
method. Manafianheris [3] employed the modified Laplace Adomian decompo-
sition for the numerical solution of integro-differential equations. Arikoglu and
Ozkol [4] seeks the solution of integro-differential equations via the differential
transform method. He [5] developed the variation iteration method (VIM) for
linear and nonlinear boundary value problems. Subsequently, the variation iter-
ation method has been applied to seek the solutions of both linear and nonlinear
integro-differential equations [6-8]. Also Mamadu and Njoseh [9] constructed
their own orthogonal polynomials and applied then in the use of orthogonal col-
location method to solve Fredholm integro-differential equations, while in [10]
they proved the convergence of VIM for numerical solution of nonlinear integro-
differential equations.
The variation iteration decomposition method (VIDM) was proposed by Noor and
Mohyud-Din [6] for solving fifth-order boundary value problems. The method is
a combination of the variation iteration method and the decomposition method.
The variation iteration decomposition method gives the solution in a compact
series which converges rapidly. The VIDM requires no discretization, linearization
or perturbation. To the best of our knowledge, the method has not been applied
to solve integro-differential equations. We formulate the correction functional
for the given integro-differential equation and determine the Lagrange multiplier
optimally. A generalized value of the Lagrange multiplier has been proposed
by Abbasbandy and Shivanian [7]. The Adomian polynomials, An, n ≥ 0,
are introduced in the correction functional and estimated by using the specified
algorithm [2], [3], [11] and [12-15].
Thus, the approximate solution is evaluated by introducing the Lagrange mul-
tiplier and the Adomian polynomials, An, n ≥ 0. The initial approximations
are estimated by the modified Laplace decomposition method [3]. Moreover, the
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VIDM as applied to the integro-differential equations produces solutions that con-
verge for h ≤ 105+n, where n is the number of iterations. Thus, three numerical
examples are given to test the effectiveness and reliability of the method.

2. Variation Iteration Method

Consider the general differential equation

(2) Ly +Ny = f(x)

with prescribed auxiliary conditions, where y is an unknown function, L is a
linear operator, N , a non linear term, and f , the source term. We can construct
correction functional for equation (2) as [1-5]:

(3) yn+1(x) = yn(x) +

∫ x

0
λ [Lyn(τ) +Nỹn(τ)− f(τ)] dτ, n ≥ 0

where λ is a general Lagrange multiplier, ỹn = 0, i.e., ỹk is a restricted vari-
able. Abbasbandy and Sivanian [7] proposed a generalized value of the Lagrange
multiplier for the variation iteration method as

(4) λ(s) =
(−1)m

(m− 1)!
(s− x)(m−1)

where m is the order of the derivatives. See [5-8] for more constructive study of
the variation iteration method and its applications.

3. The Adomian Decomposition Method

Consider the standard operation [2], [3], [11-15]

(5) Ly +Ry +Ny = G,

with prescribed auxiliary conditions, where y is the unknown function, L is the
highest order derivative which is assumed to be invertible, Ny is the nonlinear
term, and G is the source term. Applying the inverse operator L−1 to both sides
of equation (5), and using the prescribed conditions, we obtain

(6) y = L−1(G−Ry −Ny) = L−1(G)− L−1(Ry)− L−1(Ny),

where the function y is the term arising from integrating the source term and
from using the auxiliary conditions.
The standard Adomian defines the solution y as

(7) y =

∞∑
n=0

yn,

and the nonlinear term as

(8) Ny =
∞∑
n=0

An,
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where An are the Adomian polynomials determined normally from the relation
[2], [3] and [11-15].

(9) An =
1

n!

[
dn

dλn
N

(
n∑
i=0

λiyi

)]
λ=0

If the non-linear term is a non-linear function F (y), the Adomian polynomials
are arranged into the form:

A0 = F (y0)

A1 = y1F
′(y0)

(10) A2 = y2F
′(y0) +

y2
1

2!
F ′′(y0)

A3 = y3F
′(y0) + y1y2F

′′(y0) +
y3

1

3!
F ′′′(y0)

The component yn, n ≥ 0, are determined recursively. An n-component trun-
cated series is thus obtained as

(11) Sn =
n∑
i=0

yi

4. Variation Iteration Decomposition Method

For detail illustration of the concept of variation iteration decomposition method,
we consider equation (2) and its correction functional (3).
Let the unknown function y(x) be defined as

y(x) =

∞∑
n=0

yn(x)

The component yn, n ≥ 0 are determined recursively. The decomposition
method [9] involves finding the components yn, n ≥ 0, individually.
Also, we define the nonlinear term as

Ny =

∞∑
n=0

An,

where An are the Adomian polynomials. Thus, the approximate solution can be
obtained using
(12)

yn+1(x) = yn(x) +

∫ x

0

(−1)m(r − x)m−1

(m− 1)!

[
Lyn(r) +

∞∑
n=0

An − f(r)

]
dr, n ≥ 0

Equation (12) is called the variation iteration decomposition method and is highly
efficient.
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The approximate solution obtained from using equation (12) converges for h ≤
105+n, where n is the number of iterations, and x = i/h, i = 0, 1, 2, · · ·m. (m
is any positive integer)
The absolute error for this formulation is defined as |y(x)− yn(x)|, where y(x)
is the analytic solution and yn(x) is the approximate solution.

5. Numerical Examples

In this section, we apply VIDM to solve linear and nonlinear Volterra and
Fredholm integro-differential equations. The main objective is to solve these
examples for various values of h for n = 1.
Example 5.1: We consider the nonlinear integro-differential equation [8]

(13) u′(x) = −1 +

∫ x

0
u2(t)dt, u(0) = 0, 0 ≤ x ≤ 1.

The exact solution is u(x) = −x.
The correction functional for equation (13) is given as

un+1(x) = un(x)−
∫ x

0

[
dun(s)

ds
+ 1−

∫ x

0
u2
n(t)dt

]
ds.

Take initial guess as u0(x) = −x.
Now applying the variation iteration decomposition method we have

un+1(x) = un(x)−
∫ x

0

[
dun(s)

ds
+ 1−

∫ s

0

∞∑
n=0

An(t)dt

]
ds,

where An are the Adomian polynomials for Ny = u2(t). Using the algorithm
(10), we have

A0 = u2
0(t)

A1 = 2u2
0 (t)u1(t)

A2 = 2u2
0 (t)u2 (t) + u2

1(t)

Using the above relations for n = 1 the approximate solution is given as

y (x) = −x− 1

252
x7 +

1

12
x4

.
(See Table 1 for computational results.)
Example 5.2: We consider the linear Fredholm integro-differential equation [8]

(14) u′′′(x) = ex − 1 +

∫ 1

0
tu(t)dt, u(0) = 1, u′(0) = 1, u′′(0) = 1.

The exact solution is u(x) = ex.
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The correction functional for equation (14) is given as

un+1(x) = un(x)−
∫ x

0

(s− x)2

2

[
d3un(s)

ds3
− es + 1−

∫ 1

0
tun(t)dt

]
ds.

Take initial guess as u0(x) = 1 + x+ 1
2!x

2.
Now apply the variation iteration decomposition method to have

un+1(x) = un(x)−
∫ x

0

(s− x)2

2

[
d3u(s)

ds3
− es + 1−

∫ s

0
t
∞∑
n=0

un(t)dt

]
ds,

Using the above relations for n = 1,the approximate solution is given as

u (x) = ex − 1

144
x3

(See Table 2 below for computational results.)
Example 5.3: We consider the linear Volterra integro-differential equation [6]

(15) u′′(x) = cosx+
1

2
x2 −

∫ x

0
u(t)dt−

∫ x

0
u′′(t)dt, u(0) = −1, u′(0) = 1.

The exact solution is u(x) = x− cosx.
The correction functional for equation (15) is given as

un+1(x) = un(x)+

∫ x

0
(s−x)

[
d2un(s)

ds2
− cos s− 1

2
s2 +

∫ s

0
(un(t) +

d2un(t)

dt2
)dt

]
ds.

Take initial guess as u0(x) = −1 + x.
Now applying the variation iteration decomposition method we have

un+1(x) = un(x)+

∫ x

0
(s−x)

[
d3u(s)

ds3
− cos s− 1

2
s2 +

∫ s

0

∞∑
n=0

un(t)dt+

∫ s

0

d2

dt2

( ∞∑
n=0

un(t)

)
dt

]
ds,

Using the above relations for n = 1 the approximate solution is given as

u (x) = x− 1

720
x6 − 1

12
x4 +

1

6
x3 − cosx.

.(See Table 3 for computational results.)

5.1. Discussion of Results. We have successively employed the variation iter-
ation decomposition method for the numerical solution of linear and nonlinear
integro-differential equations. It is evident that the method showed an excellent
rate of convergent, which can be seen in Tables 1 - 3. It is obviously seen
that the method converges for |h| ≤ 105, and not necessarily dependent on the
number of iterates. Also, the approximate solution coincides absolutely with the
analytic solution whenever h = 105 and h = 104 as shown in the Tables 1 - 3,
respectively, with reference to the first iterate, n = 1.
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6. Conclusion

In this paper, the variation iteration decomposition method has been initiated
for the numerical solution of linear and nonlinear integro-differential equations.
The mode of convergence of the method is determined by the step size parameter,
h, even at few iterates. If the number of iterates increases, then the approximate
solution converges for h ≤ 105+n, where n is the number of iterations. Thus, the
method is highly reliable, effective and efficient for the numerical stimulation of
integro-differential equations. The variation iteration decomposition method can
be extended to other fields of Mathematics such as; higher order boundary value
problems, stochastic integro-differential equations, etc.

Table 1: Shows the numerical Results for various values of h for Example 5.1.
x = i/h, i = 0(1)10

Absolute Error Absolute Error Absolute Error Absolute Error Absolute Error

h = 10 h = 100 h = 1000 h = 10000 h = 100000
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
8.3329E-06 8.3300E-10 1.0000E-13 0.0000E+00 0.0000E+00
1.3328E-04 1.3330E-08 1.0000E-12 0.0000E+00 0.0000E+00
6.7413E-04 6.7500E-08 7.0000E-12 0.0000E+00 0.0000E+00
2.1268E-03 2.1333E-07 2.1000E-11 0.0000E+00 0.0000E+00
5.1773E-03 5.2083E-07 5.2000E-11 0.0000E+00 0.0000E+00
1.0689E-02 1.0800E-06 1.0800E-10 0.0000E+00 0.0000E+00
1.9682E-02 2.0008E-06 2.0000E-10 0.0000E+00 0.0000E+00
3.3301E-02 3.4132E-06 3.4100E-10 0.0000E+00 0.0000E+00
5.2777E-02 5.4673E-06 5.4700E-10 1.0000E-13 0.0000E+00
7.9365E-02 8.3329E-06 8.3300E-10 1.0000E-13 0.0000E+00

Table 2: Shows the numerical Results for various values of h for Example 5.2.
x = i/h, i = 0(1)10

Absolute Error Absolute Error Absolute Error Absolute Error

h = 10 h = 100 h = 1000 h = 10000
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
6.9440E-06 7.0000E-09 0.0000E+00 0.0000E+00
5.5556E-05 5.6000E-08 0.0000E+00 0.0000E+00
1.8750E-04 1.8800E-07 0.0000E+00 0.0000E+00
4.4444E-04 4.4400E-07 0.0000E+00 0.0000E+00
8.6806E-04 8.6800E-07 1.0000E-09 0.0000E+00
1.5000E-03 1.5000E-06 2.0000E-09 0.0000E+00
2.3819E-03 2.3820E-06 2.0000E-09 0.0000E+00
3.5556E-03 3.5560E-06 4.0000E-09 0.0000E+00
5.0625E-03 5.0620E-06 5.0000E-09 0.0000E+00
6.9444E-03 6.9440E-06 7.0000E-09 0.0000E+00
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Table 3: Shows the numerical Results for various values of h for Example 5.3.
x = i/h, i = 0(1)10

Absolute Error Absolute Error Absolute Error Absolute Error Absolute Error

h = 10 h = 100 h = 1000 h = 10000 h = 100000
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
1.5833E-04 1.6580E-07 2.0000E-10 0.0000E+00 0.0000E+00
1.1999E-03 1.3200E-06 1.3000E-09 0.0000E+00 0.0000E+00
3.8240E-03 4.4325E-06 4.5000E-09 0.0000E+00 0.0000E+00
8.5276E-03 1.0453E-05 1.0600E-08 0.0000E+00 0.0000E+00
1.5603E-02 2.0312E-05 2.0800E-08 0.0000E+00 0.0000E+00
2.5135E-02 3.4920E-05 3.5900E-08 0.0000E+00 0.0000E+00
3.6995E-02 5.5166E-05 5.7000E-08 1.0000E-10 0.0000E+00
5.0836E-02 8.1920E-05 8.5000E-08 1.0000E-10 0.0000E+00
6.6087E-02 1.1603E-04 1.2100E-07 1.0000E-10 0.0000E+00
8.1944E-02 1.5833E-04 1.6580E-07 2.0000E-10 0.0000E+00
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