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Abstract

Tripled fixed point theorem is an improvement to cou-

pled fixed point. In this manuscript, we prove the ex-

istence and uniqueness of tripled fixed point for mixed

monotone mapping satisfying nonlinear contractions in the

framework of partially ordered G-metric space. Our re-

sults generalize and improve some results in the literature.

1. Introduction

Fixed point theory plays significant roles in numerous areas of pure and applied sciences
such as control theory, economic theory, global analysis, nonlinear analysis and in the fields
of engineering. Several researches have been conducted on the applications, generalizations
and extensions of the Banach contraction principle in different ways by either weakening
the contractive conditions or considering different mappings [1]-[14].
Recently, there has been an increasing interest in the study of the existence of fixed points
for contractive mappings satisfying monotone properties in ordered metric spaces. The first
fixed point result on a partially ordered metric space was given by Turinici [14] where he
extended the Banach contraction principle in partially ordered sets. Furthermore, Ran and
Reurings [15] presented some applications of Turinici’s theorem to matrices. Subsequently,
Nieto and Lopez [16] extended the result of Ran and Reurings for nondecreasing mappings
and use the results to obtain a unique solution for a first order differential equation.
Bhaskar and Lakshmikantham [1] introduced the ideology of coupled fixed point for con-
tractive mappings F : X ×X → X satisfying the mixed monotone property and proved
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some interesting results. Also, Berinde and Borcut [13] introduced the concept of tripled
fixed point and proved some related theorems.
Hence, in this work, the aim is to prove the existence and uniqueness of tripled fixed point
for mixed monotone mapping satisfying nonlinear contractions in the context of partially
ordered G-metric space.

2. Preliminaries

Some basic definitions and list of results that motivated our tripled fixed point theorems
are enlisted here.

Definition 2.1. (see [2]). A G-metric space is a pair (X,G) where X is nonempty set
and G : X ×X ×X −→ [0,∞) is a function such that, for all x, y, z, a ∈ X, the following
conditions are fulfilled:
(G1)G (x, y, z) = 0 if x = y = z;
(G2)G (x, x, y) > 0 for all x, y ∈ X with x 6= y;
(G3)G (x, x, y) = G (x, y, z) for all x, y, z ∈ X with z 6= y;
(G4)G (x, y, z) = G (x, z, y) = G (y, z, x) = · · · (Symmetry in 3);
(G5)G (x, y, z) = G (x, a, a) +G (a, y, z) (rectangle inequality).

The function G is called a G-metric on X. The properties may be easily interpreted in the
setting of metric spaces. Let (X, d) be a metric space and define G : X×X×X −→ [0,∞.)
by G (x, y, z) = d (x, y) + d (x, z) + d (y, z) for all x, y, z ∈ X. Then (X,G) is a G-metric
space.

Definition 2.2. (see [2]). Let (X,G) be a G-metric space and {xn} be a sequence of points
ofX.A point x ∈ X is said to be the limit of the sequence {xn} if limn, m→∞G (xn, xm, x) = 0,
and one says the sequence {xn} is G-convergent to x.

Thus, if xn → x in G-metric space (X,G) , then, for any ε > 0, there exists a positive
integer N such that G (x, xn, xm) < ε for all n,m > N.

Proposition 2.1. (see [2]). If (X,G) is a G-metric space, then the following are equiva-
lent:

(1) {xn} is G-convergent to x;
(2) G(xn, xn, x)→ 0 as n→∞;
(3) G(xn, x, x)→ 0 as n→∞; and
(4) G(xm, xn, x)→ 0 as m,n→∞.

Definition 2.3. (see [2]). Let (X,G) be a G-metric space. A sequence {xn} is said to be
G-Cauchy if every ε > 0, there exists a positive integer N such that G(xn, xm, xl) < ε for
all n,m, l > N, that is, if G (xn, xm, xl)→ 0, as n,m, l→∞.

Proposition 2.2. (see [2]). If (X,G) is a G-metric space, then the following are equiva-
lent:

(1) The sequence {xn} is G-Cauchy; and
(2) For every ε > 0, there exists a positive integer N such that G (xn, xm, xm) < ε

for all n,m > N.

Proposition 2.3. (see [2]). If (X,G) is a G-metric space, then G(x, y, y) = 2G(y, x, x)
for all x, y ∈ X.

Proposition 2.4. (see [2]). If (X,G) is a G-metric space, then G (x, x, y) = G (x, x, z)+
G (z, z, y) for all x, y, z ∈ X.
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Definition 2.4. (see [2]). Let (X,G), (X
′
, G
′
) be two G-metric spaces. Then a function

f : X → X
′

is G-continuous at a point x ∈ X if it is G-sequentially continuous at x; that
is, whenever {xn} is G-convergent to x, {f(xn)} is G

′
-convergent to f(x).

Definition 2.5. (see [2]). A G-metric space (X,G) is said to be G-complete or a complete
G-metric space if every G-Cauchy sequence in (X,G) is convergent in X.

Proposition 2.5. (see [2]). Let (X,G) be a G-metric space. Then the function G (x, y, z)
is jointly continuous in all three of its variables.

Definition 2.6. (see [2]). Let (X,=) be a partially ordered set and F : X3 → X be a
mapping. F is said to have the mixed monotone property if F (x, y, z) is non-decreasing
in x and z and is non-increasing in y, that is, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y, z) ≤ F (x2, y, z),

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1, z) ≥ F (x, y2, z,

z1, z2 ∈ X, z1 ≤ z2 =⇒ F (x, y, z1) ≤ F (x, y, z2).

Definition 2.7. (see [2]). Let (X,≤) be a partially ordered set and F : X3 → X be a
mapping. F is said to have the mixed monotone property if F (x, y, z) is non-decreasing
in x and z and is non-increasing in y that is, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y, z) ≤ F (x2, y, z) ,

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1, z, w) ≥ F (x, y2, z) ,

z1, z2 ∈ X, z1 ≤ z2 =⇒ F (x, y, z1, w) ≤ F (x, y, z2) .

Theorem 2.8. (see [1]). Let F : X2 → X be a continuous mapping having the mixed
monotone propertyon X. Assume that there exists a k ∈ [0, 1) with
d(F (x, y), F (u, v)) ≤ k

2 [d(x, u) + d(y, v)], for all u ≤ x, y ≤ v.
If there exist x0, y0 ∈ X such that x0 ≤ F (x0, y0) and F (y0, x0) ≤ y0, then, there exist
x, y ∈ X such that F (x, y) = x and F (y, x) = y.

Theorem 2.9. (see [1]). Let F : X2 → X be a mapping having the mixed monotone
property on X. Suppose that X has the following properties:
(i) if a non-decreasing sequence {xn} tends to x, then xn ≤ x,∀n;
(ii) if a non-increasing sequence {yn} tends to y, then x ≤ yn, ∀n.
Assume that there exists a k ∈ [0, 1) with
d (F (x, y) , F (u, v)) ≤ k

2 [d (x, u) + d (y, v)] ,for all u ≤ x, y ≤ v.
If there exist x0, y0 ∈ X such that x0 ≤ F (x0, y0) and F (y0, x0) ≤ y0, then, there exist
x, y ∈ X such that F (x, y) = x and F (y, x) = y.

Definition 2.10. (see [1]).Let (X,≤) be a partially ordered set and F : X3 → X be a
mapping. F is said to have the mixed monotone property if F (x, y, z) is non-decreasing
in x and z and is non-increasing in y, that is, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y, z) ≤ F (x2, y, z) ,

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1, z) ≥ F (x, y2, z) ,

z1, z2 ∈ X, z1 ≤ z2 =⇒ F (x, y, z1) ≤ F (x, y, z2)

Definition 2.11. (see [1]). An element (x, y, z) ∈ X3 is said to be a tripled fixed point
of mapping F : X3 → X if F (x, y, z) = x, F (y, x, y) = y and F (z, y, x)= z.
For a metric space (X, d), the function ρ : X3 ×X3 −→ [0, ∞) , given by

ρ ((x, y, z) , (u, v, w)) := d (x, u) + d (y, v) + d (z, w)

.
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Is a metric on X3, that is, the pair
(
X3, ρ

)
is a metric space induced by d.

Theorem 2.12. (see [3]). Let (X, ≤) be a partially ordered set and G be a G-metric
on X such that (X,G) is a complete G-metric space. Suppose that F : X3 −→ X is
a continuous mapping having the mixed monotone property on X. Assume there exists
φ ∈ Φ such that

G(F (x, y, z), F (u, v, s), F (a, b, c) +G(F (y, z, x), F (v, s, u), F (b, c, a))

+G(F (z, x, y), F (s, u, v), F (c, a, b)) ≤ φ(G(x, u, a) +G(y, v, b)

+G(z, s, c))(G(x, u, a) +G(y, v, b) +G(z, s, c))

for all x, y, z, u, v, s, a, b, c ∈ X with x < u < a, y 4 v 4 b, and z < s < c, where either
u 6= a or v 6= b or s 6= c. If there exists x0, y0, z0 ∈ X such that x ≥ u, y ≤ v, z ≥ w,x0 ≤
F (x0, y0, z0) , y0 ≥ F (y0, z0, x0) , z0 ≤ F (z0, y0, x0), then F has a tripled fixed point;
that is, there exist x, y, z ∈ X such thatF (x, y, z) = x,F (y, x, y) = y,F (z, y, x) = z.

3. Main Result

In this section, we establish some tripled fixed point results by considering maps on gen-
eralized metric spaces endowed with partial order. Before going further, we define the
following function which will be used in our results.
Let sequences {xn} , {yn} and {zn} be nonnegative real numbers. Let Φ denote all

the functions φ : [0, ∞)3 −→ [0, 1) which satisfy that φ (xn, yn, zn) −→ 1, implies
xn, yn, zn −→ 0. An example of such function is as follows:

φ (x, y, z) =

{
In(1+k1x+k2y+k3z)

k1x+k2y+k3z
; at least one of x, y, z > 0 and k1, k2, k3 ∈ [0, 1)

t ∈ [0, 1) ; x = 0 = y = z

Theorem 3.1. Let (X, ≤) be a partially ordered set and G be a G-metric on X such
that (X,G) is a complete G-metric space. Suppose that F : X3 −→ X is a continuous
mapping having the mixed monotone property on X. Assume there exists φ ∈ Φ such that(

1

3
[G (H, J, K) +G (L, M, N) +G (P, Q, R)]

)
(3.1)

≤ φ (G (x, u, a) +G (y, v, b) +G (z, s, c))× (G (x, u, a) +G (y, v, b) +G (z, s, c))

3

where, H = F (x, y, z) , J = F (u, v, s) ,K = F (a, b, c) , L = F (y, z, x) ,M =
F (v, s, u) , N = F (b, c, a) , P = F (z, x, y) , Q = F (s, u, v) and R = F (c, a, b) for
all x, y, z, u, v, s, a, b, c ∈ X with x < u < a, y 4 v 4 b, and z < s < c, where either
u 6= a or v 6= b or s 6= c. If there exists x0, y0, z0 ∈ X such that x0 4 F (x0, y0, z0) , y0 <
F (y0, z0, x0) , z0 4 F (z0, y0, x0), then F has a tripled fixed point; that is, there exist
x, y, z ∈ X such that

F (x, y, z) = x, F (y, x, y) = y, F (z, y, x) = z.

Proof. Let x0, y0, z0 ∈ X such that

x0 4 F (x0, y0, z0) , y0 < F (y0, z0, x0) , z0 4 F (z0, y0, x0) .

We construct the sequences {xn} , {yn} and {zn} as

xn+1 = F (xn, yn, zn) ,

yn+1 = F (yn, xn, yn) ,
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(3.2) zn+1 = F (zn, yn, xn) ,

for n = 1, 2, 3 . . . . By the mixed monotone property, we have

x0 4 x1 4 x2 4 · · · ≤ xn+1 4 . . . ,

y0 < y1 < y2 < · · · < yn+1 < . . . ,

z0 4 z1 4 z2 4 · · · 4 zn+1 4 . . . .

Assume that there exists a nonnegative integer n such that

G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn) = 0.

It follows that

G (xn+1, xn+1, xn) = 0 = G (yn+1, yn+1, yn) = G (zn+1, zn+1, zn) .

By property (G1) of G-metric space, we have xn+1 = xn, yn+1 = yn and zn+1 = zn.
Now, suppose that for all nonnegative integern

G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn) 6= 0.

Using 3.1 and 3.2 we have

(3.3)

(
1
3 [G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn)]

)
=
(
1
3 [G (A,B,C) +G (L,M,N) +G (U, V,W )]

)
≤ φ (G (xn, xn, xn−1) , G (yn, yn, yn−1) , G (zn, zn, zn−1))

× (G(xn, xn, xn−1)+G(yn, yn, yn−1)+G(zn, zn, zn−1))
3 .

whereA = F (xn, yn, zn) , B = F (xn, yn, zn) , C = F (xn−1, yn−1, zn−1) , L = F (yn, xn, yn) ,
M = F (yn, xn, yn) , N = F (yn−1, xn−1, yn−1) , U = F (zn, yn, xn) , V = F (zn, yn, xn) ,
W = F (zn−1, yn−1, xn−1) ,

(3.4)
G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn)
< G (xn, xn, xn−1) +G (yn, yn, yn−1) +G (zn, zn, zn−1) .

For all n ∈ N, we let

δn =
1

3
[G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn)] .

Then the sequence (δn) is decreasing; therefore, there is some δ ≥ 0 such that

(3.5) lim
n→∞

δn =
1

3
lim
n→∞

[G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn)]

= δ
We will show that δ = 0. Suppose to the contrary that δ > 0, we have from 3.3.

(3.6)
G(xn+1,xn+1,xn)+G(yn+1,yn+1,yn)+G(zn+1,zn+1,zn)
G(xn, xn, xn−1)+G(yn, yn, yn−1)+G(zn, zn, zn−1)

≤ φ (G (xn, xn, xn−1) , G (yn, yn, yn−1) , G (zn, zn, zn−1)) < 1.

Letting n→∞, we have

(3.7) φ (G (xn, xn, xn−1) , G (yn, yn, yn−1) , G (zn, zn, zn−1))→ 1.

Using the property of the function φ, we have
G (xn, xn, xn−1) , G (yn, yn, yn−1) , G (zn, zn, zn−1)→ 0 as n→∞.
So, we have
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G (xn, xn, xn−1) +G (yn, yn, yn−1) +G (zn, zn, zn−1)→ 0asn→∞.
a contradiction to 3.6. Thus, δ = 0. From 3.4, we have

(3.8) G (xn+1, xn+1, xn) +G (yn+1, yn+1, yn) +G (zn+1, zn+1, zn)→ 0.

To prove that the sequence (xn) , (yn) , and (zn) are G-Cauchy in the G-metric space
(X,G). Suppose on the contrary that at least one of the sequences (xn) , (yn) , and (zn) is
not a G-Cauchy sequence in (X,G). So there exist ε > 0 and sequences of natural numbers
{m (k)} and {l (k)} with m (k) > l (k) ≥ k for every natural numbers k, such that

(3.9) tk =
1

3

[
G
(
xm(k), xm(k), xl(k)

)
+G

(
ym(k), ym(k), yl(k)

)
+G

(
zm(k), zm(k), zl(k)

)]
≥ ε.

We choose m (k) such that it is the smallest integer satisfying 3.9. Thus,

(3.10)
1

3

[
G
(
xm(k)−1, xm(k)−1, xl(k)

)
+G

(
ym(k)−1, ym(k)−1, yl(k)

)
+G

(
zm(k)−1, zm(k)−1, zl(k)

)]
< ε.

Using rectangle inequality property of a G-metric, with 3.9 and 3.10 in mind, we get

(3.11)

tk = 1
3

[
G
(
xm(k), xm(k), xl(k)

)
+G

(
ym(k), ym(k), yl(k)

)
+G

(
zm(k), zm(k), zl(k)

)]
≤ 1

3

[
G
(
xm(k), xm(k), xm(k)−1

)
+G

(
xm(k)−1, xm(k)−1, xl(k)

)]
+1

3

[
G
(
ym(k), ym(k), ym(k)−1

)
+G

(
ym(k)−1, ym(k)−1, yl(k)

)]
+1

3

[
G
(
zm(k), zm(k), zm(k)−1

)
+G

(
zm(k)−1, zm(k)−1, zl(k)

)]
< 1

3

[
G
(
xm(k), xm(k), xm(k)−1

)
+G

(
ym(k), ym(k), ym(k)−1

)]
+1

3

[
G
(
zm(k), zm(k), zm(k)−1

)]
+ ε.

By letting n→∞ in 3 and using 3.7 we have

(3.12)
tk = 1

3

[
G
(
xm(k), xm(k), xl(k)

)
+G

(
ym(k), ym(k), yl(k)

)
+G

(
zm(k), zm(k), zl(k)

)]
→ ε

Using rectangle inequality property, we get

tk = 1
3

[
G
(
xm(k), xm(k), xl(k)

)
+G

(
ym(k), ym(k), yl(k)

)
+G

(
zm(k), zm(k), zl(k)

)]
≤ 1

3

[
G
(
xm(k), xm(k), xm(k)+1

)
+G

(
xm(k)+1, xm(k)+1, xl(k)+1

)
+G

(
xl(k)+1, xl(k)+1, xl(k)

)]
+1

3

[
G
(
ym(k), ym(k), ym(k)+1

)
+G

(
ym(k)+1, ym(k)+1, yl(k)+1

)
+G

(
yl(k)+1, yl(k)+1, yl(k)

)]
+1

3

[
G
(
zm(k), zm(k), zm(k)+1

)
+G

(
zm(k)+1, zm(k)+1, zl(k)+1

)
+G

(
zl(k)+1, zl(k)+1, zl(k)

)]
= δl(k) + 1

3

[[
G
(
xm(k), xm(k), xm(k)+1

)
+G

(
ym(k), ym(k), ym(k)+1

)
+G

(
zm(k), zm(k), zm(k)+1

)]]
+1

3

[[
G
(
xm(k)+1, xm(k)+1, xl(k)+1

)
+G

(
ym(k)+1, ym(k)+1, yl(k)+1

)
+G

(
zm(k)+1, zm(k)+1, zl(k)+1

)]]
.

Using the fact that G (x, x, y) ≤ 2G (x, y, y) in the above inequality for any x, y ∈ X,
we obtain

(3.13)

tk ≤ δl(k) + 2
3δm(k)

+1
3

[
G
(
xm(k)+1, xm(k)+1, xl(k)+1

)
+G

(
ym(k)+1, ym(k)+1, yl(k)+1

)]
+1

3

[
G
(
zm(k)+1, zm(k)+1, zl(k)+1

)]
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Using 3.1, 3.2 and 3.13 we have

tk ≤ δl(k) + 2
3δm(k)

+1
3

[
G
(
F
(
xm(k), ym(k), zm(k)

)
, F

(
xm(k), ym(k), zm(k)

)
, F

(
xl(k), yl(k), zl(k)

))]
+1

3

[
G
(
F
(
ym(k), xm(k), ym(k)

)
, F

(
ym(k), xm(k), ym(k)

)
, F

(
yl(k), xl(k), yl(k)

))]
+1

3

[
G
(
F
(
zm(k), ym(k), xm(k)

)
, F

(
zm(k), ym(k), xm(k)

)
, F

(
zl(k), yl(k), xl(k)

))]
≤ φ

(
G
(
xm(k), xm(k), xl(k)

)
, G
(
ym(k), ym(k), yl(k)

)
, G

(
zm(k), zm(k), zl(k)

))
×
(
1
3

[
G
(
xm(k), xm(k), xl(k)

)
+G

(
ym(k), ym(k), yl(k)

)
+ G

(
zm(k), zm(k), zl(k)

)])
+δl(k) + 2

3δm(k)

= φ
(
G
(
xm(k), xm(k), xl(k)

)
, G
(
ym(k), ym(k), yl(k)

)
, G

(
zm(k), zm(k), zl(k)

))
tk + δl(k) + 2

3δm(k)

Thus, we have

(3.14)
tk−δl(k)− 2

3
δm(k)

tk
≤ φ

(
G
(
xm(k), xm(k), xl(k)

)
, G
(
ym(k), ym(k), yl(k)

)
, G

(
zm(k), zm(k), zl(k)

))
< 1.

Let k →∞ in 3.14, we have

φ
(
G
(
xm(k), xm(k), xl(k)

)
, G
(
ym(k), ym(k), yl(k)

)
, G

(
zm(k), zm(k), zl(k)

))
→ 1.

As φ (xn, yn, zn)→ 1it implies that xn, yn, zn → 0, we have

G
(
xm(k), xm(k), xl(k)

)
, G
(
ym(k), ym(k), yl(k)

)
, G

(
zm(k), zm(k), zl(k)

)
→ 0.

a contradiction. Thus, the sequence(xn) , (yn) , and (zn) are G-Cauchy in the G-metric
space (X,G). Since (X,G) is complete G-metric space, hence (xn) , (yn) , and (zn) are G-
convergent. Then there exists x, y, z ∈ X such that (xn) , (yn) , and (zn) are G-convergent
to x, y and z respectively. Since F is continuous. Letting n→∞ in 3.2, we have
F (x, y, z) = x, F (y, x, y) = y, and F (z, y, x) = z. Thus, we conclude that F has a
tripled fixed point. �

3.1. Uniqueness of tripled fixed point. In this section we shall prove the uniqueness
of tripled fixed point. For a tripled space X3 of partial ordered set (X, 4). We define a
partial ordering as follows: for all (x, y, z) , (u, v, w) ∈ X3

(x, y, z) 4 (u, v, w)⇔ x 4 u, y < v, z 4 w. (4.1)

We say that (x, y, z) is equal to (u, v, w) if and only if x = u, y = v, and z = w.

Theorem 3.2. Adding the following condition to the hypothesis of theorem 8, suppose
that for all (x, y, z) , (u, v, w) ∈ X3, there exists (a, b, c) ∈ X3 that is comparable to
(x, y, z) and (u, v, w) , then F has a unique tripled fixed point.

Proof. The set of tripled fixed point of F is not empty due to theorem 8. Assume, now,
(x, y, z) and (u, v, w) are the tripled fixed point of F , that is,

F (x, y, z) = x, F (u, v, w) = u,

F (y, x, y) = y, F (v, u, v) = v,

F (z, y, x) = z, F (w, v, u) = w,

We shall show that (x, y, z) and (u, v, w) are equal. By assumption, there exists
(a, b, c) ∈ X3 that is comparable to (x, y, z) and (u, v, w) .Define sequences {an}, {bn} ,
and {cn} such that

a = a0, b = b0, c = c0,

an = F (an−1, bn−1, cn−1), bn = F (bn−1, an−1, bn−1),

and
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(3.15) cn = F (cn−1, bn−1, an−1).

Since (x, y, z) is comparable with (a, b, c) , we may assume that (x, y, z) ≥ (a, b, c) =
(a0, b0, c0) . Recursively, we get that

(3.16) (x, y, z) ≥ (an, bn, cn) for all n.

Thus, from 3.1 we have

(3.17)

(
1
3 [G (an, x, x) +G (bn, y, y) +G (cn, z, z)]

)
=
(
1
3 [G (F (an−1, bn−1, cn−1) , F (x, y, z) , F (x, y, z))]

)
+
(
1
3 [G (F (bn−1, an−1, bn−1) , F (y, x, y) , F (y, x, y))]

)
+
(
1
3 [G (F (cn−1, bn−1, an−1) , F (z, y, x) , F (z, y, x))]

)
≤ φ (G (an−1, x, x) +G (bn−1, y, y) +G (cn−1, z, z))
×1

3 (G (an−1, x, x) +G (bn−1, y, y) +G (cn−1, z, z))

which implies

(3.18) G(an, x, x)+G(bn, y, y)+G(cn, z, z) < G(an−1, x, x)+G(bn−1, y, y)+G(cn−1, z, z)

We see that the sequence (G (an, x, x) +G (bn, y, y) +G (cn, z, z)) is decreasing, there ex-
ists some ε ≥ 0 such that

(3.19) G(an, x, x) +G(bn, y, y) +G(cn, z, z)→ ε as n→∞.
Now, we show that ε = 0. On the contrary, suppose that ε > 0. Following the same
arguments as in the proof of Theorem 3.1, we have

φ (G (an−1, x, x) , G (bn−1, y, y) , G (cn−1, z, z))→ 1.

Implies,
G (an−1, x, x) , G (bn−1, y, y) , G (cn−1, z, z)→ 0.

Consequently, we have

G (an, x, x) +G (bn, y, y) +G (cn, z, z)→ 0,

a contradiction in virtue of (4.4) . Hence, ε = 0. Therefore, (4.6) becomes

(3.20) G(an, x, x) +G(bn, y, y) +G(cn, z, z)→ 0 as n→∞.
Similarly, we can show that

(3.21) G (an, u, u) +G (bn, v, v) +G (cn, w, w)→ 0 as n→∞

(3.22) G(an, an, x) +G(bn, bn, y) +G(cn, cn, z)→ 0 as n→∞

(3.23) G(an, an, u) +G(bn, bn, v) +G(cn, cn, w)→ 0 as n→∞.
Using (4.7)− (4.10) , the rectangle inequality and taking n→∞, we obtain
G (u, x, x) +G (v, y, y) +G (w, z, z) = 0. Thus, we conclude that x = u, y = v and z = w.
Hence, F has a unique tripled fixed point. �
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Conclusion: The existence and uniqueness of tripled fixed point for continuous mapping
with mixed monotone property satisfying nonlinear contractions were proved. It was done
in the framework of partial ordered metric space.
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