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Subclasses of Partial Contraction Mapping in Semigroup of Linear
Operators

K. Rauf∗, A. Y. Akinyele and S. O. Makanjuola

Abstract

Some properties of C0-Semigroup are investigated and are

used to derive some characteristics of ω-Order Preserving

and Reversing Partial Contraction Mapping where homo-

geneous, inhomogeneous and regularity of mild solution for

analytic semigroups are engaged. Furthermore, the new sub-

classes performed exactly like semigroup of linear operators.

1. Introduction

Recently, ω-Order semigroup was introduced in [14] and was established as subset
of C0-semigroup. Let X be a Banach space and K be a linear operator such that
K : D(K) ⊆ X → X. Given x ∈ X, the abstract Cauchy problem for operator
K with initial data x comprised of finding a solution u(t) to the homogeneous,
inhomogeneous and regularity of mild solution for analytic semigroups.
The homogeneous Initial Value Problem (IVP)

(1)


du(t)

dt
= Ku(t) t > 0

u(0) = x

where the solution means an X valued function u(t) such that u(t) is continuous
for t ≥ 0, continuously differentiable and u(t) ∈ D(K) for t > 0 such that (1) is
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valid. Obviously, u(t) ∈ D(K) for t > 0 and u is continuous at t = 0, (1) can

not have a solution for x /∈ D(K). It was proved that if operator K in ω-Order
preserving (OCPn) or ω-Order reversing (ORCPn) partial Contraction mapping
then K is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} which is a
semigroup of linear operator. The abstract Cauchy problem for K has a solution
u(t) = T (t)x, for every x ∈ D(K).
In the case of inhomogeneous IVP,

(2)


du(t)

dt
= Ku(t) + f(t) t > 0

u(0) = x

where f : [0, T ]→ X. In this article, K is assumed to be infinitesimal generator of
a C0-semigroup {T (t), t ≥ 0} such that the corresponding homogeneous equation
(equation with f ≡ 0) contains a unique solution for every initial value x ∈ D(K)
and f ∈ L1([0, T ];X). Furthermore, we shall take the regularity of the mild
solutions for analytic semigroups except otherwise stated. The mild solution of
the IVP (2) is the continuous function

(3) u(t) = T (t)x+

∫ t

0
T (t− s)(s)ds.

By imposing further conditions on f ( f ∈ C1([0, T ];X)), the mild solution (3)
becomes the classical solution, hence, a continuously differentiable solution of
(2). Suppose K is the infinitesimal generator of an analytic semigroup, then the
results imply that T (t) is an analytic semigroup with f ∈ Lp([0, T ];X) and p > 1,
hence (3) is Hölder continuous. The theory of stability is very important since
stable C0-semigroup correspond one-to-one to asymptotically stable (in the sense
of Lyapunov) in a well-posed abstract linear Cauchy problems. The resolvent
of K can be used to describe the relationship between the spectrum of K and
that of semigroup operator (T (t)t≥0) and to establish the relationship between a
semigroup operator, its generator and its resolvent.
A significant aspect of C0-semigroup is dual properties of a semigroup of linear
operator because of the emphasis on weakly topologies of operator that makes it to
obtain a weak generator of a semigroup (T (t)∗)t≥0. Several authors established
results on the theory of semigroups of operator, see [1]-[17] and the reference
therein. This paper consists of results on homogeneous, inhomogeneous and the
regularity of mild solution for analytic semigroups of bounded linear operator.
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2. Preliminaries

We recall the following definitions, provide some examples and present an ele-
mentary prove of a known result.

Definition 2.1. (C0-Semigroup) [16]: A C0-Semigroup is a strongly continuous
one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2. (ω-OCPn) [14]: A transformation α ∈ Pn is called ω-order-
preserving Partial Contraction Mapping if ∀x, y ∈Domα : x ≤ y =⇒ αx ≤ αy
and at least one of its transformation must satisfy αy = y such that T (t + s) =
T (t)T (s) whenever t, s > 0 and otherwise for T (0) = I.

Definition 2.3. (ω-ORCPn) [14]: A transformation α ∈ Pn is called ω-order-
reversing partial contraction mapping if ∀x, y ∈Domα : x ≤ y =⇒ αx ≥ αy
and at least one of its transformation must satisfy αy = y such that T (t + s) =
T (t)T (s) whenever t, s > 0 and otherwise for T (0) = I.

Definition 2.4. (Analytic Semigroup) [16]: We say that a C0-semigroup {T (t); t ≥
0} is analytic if there exists 0 < θ ≤ π, and a mapping S : C̄θ → L(X) such that:
(i) T (t) = S(t) for each t ≥ 0;
(ii) S(z1 + z2) = S(z1)S(z2) for z1, z2 ∈ C̄θ;
(iii) limz1∈C̄θ,z1→0S(z1)x = x for x ∈ X; and

(iv) the mapping z1 → S(z1) is analytic from C̄θ to L(X). In addition, for each
0 < δ < θ, and if the mapping z1 → S(z1) is bounded from Cδ to L(X), then the
C0-semigroup {T (t); t ≥ 0} is called analytic and uniformly bounded.

Definition 2.5. (Classical Solution) [13]: A function u : [0, T ]→ X is a classical
solution of (2) on [0, T ] if u is continuous and continuously differentiable on [0, T ],
u(t) ∈ D(A) for 0 < t < T and (2) is satisfied on [0, T ].

Definition 2.6. (Compact Semigroup) [7]: A C0-semigroup is compact if for
each t > 0, T (t) is a compact operator.

Definition 2.7. (Dissipative) [7]: A linear operator (A,D(A)) is dissipative if
each x ∈ X there exists x∗ ∈ F (x) such that Re(Ax, x∗) ≤ 0.

Definition 2.8. (Hölder Continuity) [18]: A real or complex-valued function
f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder
continuous, when there are non-negative real constants C, α > 0, such that

|f(x)− f(y)| ≤ C‖x− y‖α

for all x and y in the domain of f . More generally, the condition can be formulated
for functions between any two metric spaces. The number α is called the exponent
of the Hölder condition. A function on an interval satisfying the condition with
α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For
any α > 0, the condition implies that the function is uniformly continuous.
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Definition 2.9. (Locally Hölder Continuous) [13]: Let I be an interval. A
function f : I → X is Hölder continuous with exponent ζ : 0 < ζ < 1 on I if
there is a constant L such that

(4) ‖f(t)− f(s)‖ ≤ L|t− s|ζ for s, t ∈ I.
It is locally Hölder continuous if every t ∈ I has a neighborhood in which f
is Hölder continuous. It is easy to check that if I is compact, then f is Hölder
continuous and locally Hölder continuous on I. We denote the family of all Hölder
function with exponent ζ on I by Cζ(I : X).

Example 2.10. : For any 3 × 3 matrix [Mm(C)] and for each λ > 0 such that
λ ∈ ρ(K) where ρ(K) is a resolvent set on X, if

K =

1 2 3
1 2 2
2 2 3

 then T (t) =

 etλ e2tλ e3tλ

etλ e2tλ e2tλ

e2tλ e2tλ e3tλ

 = etKλ.

Example 2.11. : By the translation semigroup starting from Kf = f
′

on
C0(R+) or Lp(R+), 1 ≤ p < ∞, the operator K2f = f

′′
generates a bounded

analytic semigroup. A slightly more involved case of several space dimensions is
the spaces C0(R+) or Lp(R+), 1 ≤ p <∞. Denoted by (∪i(t))t∈R+ is the strongly
continuous semigroup (∪i(t)f)(x) = f(x1, · · · , xi−1, xi+t, · · · , xn), where x ∈ Rn,
t ∈ R+ and 1 ≤ i ≤ n, where Ki is its generator and K ∈ ω−OCPn. Obviously,
these semigroups commutes as the resolvent of Ki and hence of K2i.

Example 2.12. : Suppose K : D(K) ⊆ X → X is an unbounded generator of
a strongly continuous semigroup and take an isomorphism S ∈ L(X) such that
D(K) ∩ S(D(K)) = {0}. Then B = SKS−1 is a generator as well, but K +B is
defined only on D(K +B) = D(K) ∩D(B) = D(K) ∩ S(D(K)) = {0}.
A tangible example for this circumstances is on X = C0(R+) by Kf = f

′
with its

canonical domain D(K) = C
′
0(R+) and Sf = q.f for some continuous, positive

function q such that q and q−1 are bounded and nowhere differentiable. Defining
the operator B as Bf = q.(q1.f)

′
on D(B) = {f ∈ X : q−1.f ∈ D(K)}, we obtain

that the sum K +B is defined only on {0}.

Theorem 2.13. [17]: A linear operator A : D(A) ⊆ X → X is the infinitesimal
generator for a C0-semigroup of contraction if and only if

i. A is densely defined and closed; and
ii. (0,+∞) ⊆ ρ(A) and for each λ > 0, we have

(5) ‖R(λ,A)‖L(X) ≤
1

λ
.

Theorem 2.14. [19]: Let A : D(A) ⊆ X → X be a densely defined operator.
Then A generates a C0-semigroup of contractions on X if and only if
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i. A is dissipatives; and
ii. there exists λ > 0 such that λI −A is surjective.

Moreover, if A generates a C0-semigroup of contractions, then λI−A is surjective
for any λ > 0, and we have Re(Ax, x∗) ≤ 0 for each x ∈ D(A) and each x∗ ∈
F (x).

Lemma 2.15. [13]: Let u(t) be a continuous X valued function on [0, T ], if

(6)
∥∥∥∫ T

0
ensu(s)ds

∥∥∥ ≤Mforn = 1, 2, · · ·

then, u(t) = 0 on [0, T ].

Proof: Let x∗ ∈ X∗ and set ϕ =< x∗, u(t) > 0, then, ϕ is clearly continuous on
[0, T ] and

(7)∣∣∣ ∫ T

0
ensϕ(s)ds

∣∣∣ =
∣∣∣ < x∗,

∫ T

0
ensu(s)ds >

∣∣∣ ≤ ‖x∗‖.M = M1 for n = 1, 2, · · ·

We show that (6) implies that ϕ(t) ≡ 0 on [0, T ] and since x∗ ∈ X∗ was arbitrary,

it follows that u(t) ≡ 0 on [0, T ]. Consider the series
∑∞

k=1
(−1)k−1

k! eknτ = 1 −
exp{−enτ}. This series converges uniformly to τ on bounded intervals. Therefore,

(8)

∣∣∣ ∫ T

0

∞∑
k=1

(−1)k−1

k!
ekn(1−T+s)ϕ(s)ds

∣∣∣
≤
∞∑
k=1

1

k!
ekn(1−T )

∣∣∣ ∫ T

0
eknsϕ(s)ds

∣∣∣ ≤M1 (exp{en(1−t)} − 1)

For t < T , the right - hand side of (7) tends to zero as n → ∞. On the other
hand, we have

(9)

∫ T

0

∞∑
k=1

(−1)k−1

k!
ekn(1−T+s)ϕ(s)ds =

∫ T

0
(1− exp{−en(1−T+s)}ϕ(s))ds.

Using Lebesque’s dominated convergence theorem, we noticed that the right hand

side of (8) converges to
∫ T
T−1 ϕ(s)ds as n → ∞. Combining this together with

(7), we found out that for every 0 ≤ t ≤ T , we have
∫ T
T−1 ϕ(s)ds = 0, which

implies ϕ(t) ≡ 0 on [0, T ].
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3. Main Results

This section presents homogeneous, inhomogeneous and the regularity of mild
solution for analytic semigroups IVP on ω-OCPn and ω-ORCPn.

Theorem 3.1. Let K ∈ OCPn be densely defined linear operator. If R(λ;K)
exists for all real λ ≥ λ0 and

(10) lim
λ→∞

Supλ−1log‖R(λ;K)‖ = 0,

then, system (1) has at most one solution for every x ∈ X.

Proof: We noted that u(t) is a solution of (1) if and only if e2tu(t) is a solution
of the IVP.

dv

dt
= (K + zI)v, V (0) = x.

Thus, K ∈ OCPn can be translated by a constant multiple of the identity and
assume that R(λ;K) exists for all real λ, λ ≥ 0 and that (10) is satisfied. Let
u(t) be a solution of (1) satisfying u(0) = 0. We need to show that u(t) = 0, to
this end, consider the function t→ R(λ;K)u(t) for λ > 0. Since u(t) is a solution
of (1), then, we have

d

dt
R(λ;K)u(t) = R(λ;K)Ku(t) = λR(λ;K)u(t)− u(t),

which implies

(11) R(λ;K)u(t) = −
∫ 1

0
eλ(t−τ)(τ)dτ.

From the assumption (10) it follows that for every σ > 0, we have

lim
λ→∞

e−σλ‖R(λ;K)‖ = 0,

and therefore it follows from (11) that

(12) lim
λ→∞

∫ t−σ

0
eλ(t−σ−τ)u(τ)dτ = 0.

From Lemma 2.15, we deduce that u(τ) ≡ 0 for 0 ≤ τ ≤ t− σ. Since t and σ are
arbitrary, then u(t) ≡ 0 for t ≥ 0. The proof is complete �.

Theorem 3.2. Let K ∈ ORCPn be densely defined linear operator with nonempty
resolvent set ρ(K). Then, the initial value problem (1) has a unique solution u(t)
which is continuously differentiable on [0,∞] for every initial value x ∈ D(K) if
and only if K is the infinitesimal generator of a C0-semigroup {T (t); t ≥ 0}.
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Proof: If K is the infinitesimal generator of a C0-semigroup {T (t); t ≥ 0}, then
it follows that T (t)x is the unique solution of (1) with the initial value x ∈ D(K).
Moreover, T (t)x is continuously differentiable for 0 ≤ t <∞. On the other hand,
if (1) has a unique continuously differentiable solution on [0,∞] for every initial
data x ∈ D(K), then we see that K ∈ ORCPn is the infinitesimal generator of
C0-semigroup {T (t); t ≥ 0}. We now assume that (1) has a unique continuously
differentiable solution on [0,∞] which is denoted by u(t, x). Otherwise, for x ∈
D(K), we define the graph norm by |x|G = ‖x‖+‖Kx‖. Since ρ(K) 6= φ, then K
is closed and therefore D(K) endowed with graph norm is a Banach space which
we denote by [D(K)]. Let Xt0 be a Banach space of continuous functions from
[0, t0] onto [D(K)] with the usual supremum norm. We consider the mapping
S : [D(K)] → Xt0 defined by Sx = u(t;x) for 0 ≤ t ≤ t0. From the linearity
of (1) and the uniqueness of the solutions, it is clear that S is a linear operator
defined on all of [D(K)]. Then, the operator S is closed. Indeed, if xn → x in
[D(K)] and Sxn → v in Xt0 , then from the closeness of K and

u(t;xn) = xn +

∫ t

0
Ku(τ ;xn)dτ,

it follows that as n→∞, we have

v(t) = x+

∫ t

0
Kv(τ)dτ,

which implies that v(t) = u(t;x) and S is closed. Therefore, by the closed graph
theorem, S is bounded and

(13) sup0≤t≤t0 |u(t;x)|G ≤ C|x|G.
We now define a mapping T (t) : [D(K)]→ [D(K)] by T (t)x = u(t;x).
From the uniqueness of the solutions of (1), it follows that T (t) has the semigroup
property. From (13) and for 0 ≤ t ≤ t0, then, T (t) is uniformly bounded. This
implies that T (t) can be extended by T (t)x = T (t − nt0)T (t0)nx for nt0 ≤ t <
(n0 + 1)t to a semigroup on [D(K)] satisfying

(14) |T (t)x|G ≤Meωt|x|G.
We now need to show that

(15) T (t)Ky = KT (t)y.

for all y ∈ D(K2) and K ∈ ω-ORCPn. By putting

(16) v(t) = y +

∫ t

0
u(s;Ky)ds,
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then we have

(17) v
′
(t) = u(t;Ky) = Ky+

∫ t

0

d

ds
(s;Ky)ds = K(y+

∫ t

0
u(s;Ky)ds) = Kv(t).

Since v(0) = y we have by uniqueness of the solution (1), v(t) = u(t; y) and

Kx(t; y) = v
′
(t) = u(t;Ky) which is the same as (15). Since D(K) is dense in

X and by our assumption, ρ(K) = φ, also D(K2) is dense in X. Let λ0 ∈ ρ(K),
λ0 = 0 be fixed and let y ∈ D(K2). Assume x = (λ0I −K)y, then by (15), we
have

(18) T (t)x = (λ0I −K)T (t)y

therefore

(19) ‖T (t)x‖ = ‖(λ0I −K)T (t)y‖ ≤ C|T (t)y|G ≤ C1e
ωt|y|G.

But

(20) |y|G = ‖y‖+ ‖Ky‖ ≤ C2‖x‖,

which implies that

(21) ‖T (t)x‖ ≤ C2e
ωt‖x‖.

Therefore T (t) can be extended to all of X by Continuity. After this extension,
T (t) becomes a C0-semigroup on X. To complete the proof, we have to show that
K is the infinitesimal generator of T (t). Let denote the infinitesimal generator
of T (t) by K1 ∈ ω-ORCPn. Assume x ∈ D(K) by definition of T (t), we have
T (t)x = x(t;x) and by assumption that

(22)
d

dt
T (t)x = KT (t)x, for t ≥ 0,

which implies, in particular, that (d/dt)T (t)x|t=0 = Kx, therefore K1 ⊃ K. Let
Reλ > ω and y ∈ D(K2). It follows from (15) and K1 ⊃ K that

(23) e−λtKT (t)y = e−λtT (t)Ky = e−λtT (t)Kty.

Integrating (23) from 0 to ∞ yields

(24) KR(λ;K1)y = R(λ;K1)K1y.
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But K1R(λ;K1)y = R(λ;K1)K1y. Hence, KR(λ;K1)y = R(λ;K1)K1y for every
y ∈ D(K2). Since K1R(λ;K1) is uniformly bounded, then K is closed and D(K)
is dense in X, and it follows that KR(λ;K1)y = R(λ;K1)K1y for every y ∈ X
and K ∈ ω-ORCPn. This means that D(K) ⊃ Range R(λ;K1) = D(K1) and
K ⊃ K1. Hence, K = K1 and this complete the proof �.

Theorem 3.3. Suppose K ∈ ω-OCPn is the infinitesimal generator of a C0-
semigroup {T (t); t ≥ 0}, let f ∈ L′(0, T ;X) be continuous on [0, T ] and assume

(25) v(t) =

∫ t

0
T (t− s)f(s)ds, 0 ≤ t ≤ T.

System (2) has a solution x on [0, T ] for every x ∈ D(K) if one of the following
conditions is satisfied:
(i) v(t) is continuously differentiable on [0, T ]; and
(ii) v(t) ∈ D(K) for 0 < t < T and Kv(t) is continuous on [0, T ].
If (2) has a solution u on [0, T ] for some x ∈ D(K) then v satisfies both (i) and
(ii).

Proof: Assume (2) has a solution u for some x ∈ D(K), then this solution is
given by (2). Consequently v(t) = u(t) − T (t)x is differentiable for t > 0 as

the difference of two such differentiable functions and v
′
(t) = u

′
(t) − T (t)Kx

is obviously continuous on [0, T ]. Therefore (i) is satisfied. Also, if x ∈ D(K),
T (t)x ∈ D(K) for t ≥ 0, therefore v(t) = u(t)− T (t)x ∈ D(K) for t > 0 and

Kv(t) = Ku(t)−KT (t)x = u
′
(t)− f(t)− T (t)Kx

is continuous on [0, T ]. Thus, (ii) is satisfied. On the other hand, it is easy to
verify for h > 0, the identity

(26)
T (h)− I

h
v(t) =

v(t+ h)− v(t)

h
= −1

h

∫ t+h

t
T (t+ h− s)f(s)ds.

From the continuity of f , it is clear that the second term on the right-hand of
(26) has a limit f(t) as h → 0. Suppose v(t) is continuously differentiable on
[0.T ], then it follows from (26) that v(t) ∈ D(K) for 0 < t < T so that

(27) Kv(t) = v
′
(t)− f(t),

since v(0) = 0, it implies that

u(t) = T (t) + v(t)

is the solution of (2) for x ∈ D(K) and A ∈ ω-OCPn. Assume v(t) ∈ D(K),
then it follows from (26) that v(t) is differentiable from the right at t ≥ 0 and
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the right derivative D+v(t) of v satisfies

D+v(t) = Kv(t) + f(t).

Since D+v(t) is continuous, then v(t) is continuously differentiable and

v
′
(t) = Kv(t) + f(t).

if v(0) = 0, then u(t) = T (t)x+ v(t) is the solution of (2) for x ∈ D(K) and the
proof is complete �.

Proposition 3.4. Let K ∈ ω-ORCPn be the infinitesimal generator of a C0-
semigroup {T (t); t ≥ 0}, suppose f(s) is continuously differentiable on [0, T ],
then :
(i) The Initial Value Problem (2) has a unique solution u on [0, T ] for every

x ∈ D(K). (ii) Assume f ∈ L′(0, T ;X) be continuous on [0, T ] and f(s) ∈ D(K)

for 0 < s < T so that Kf(s) ∈ L
′
(0, T ;X) for every x ∈ D(K) and K ∈ ω-

ORCPn, then system (2) has a unique solution on [0, T ].

Proof: To prove (i), Assume

(28) v(t) =

∫ t

0
T (t− s)f(s)ds =

∫ t

0
T (s)f(t− s)ds.

It is clear from (28) that v(t) is differentiable for t > 0 and that its derivative

v
′
(t) = T (t)f(0) +

∫ t

0
T (s)f(t− s)ds = T (t)f(0) +

∫ t

0
T (t− s)f ′(s)ds

is continuous on [0, T ]. The results follow from Theorem 3.3 and this complete
the proof of (i).
To prove (ii), from the conditions of the proposition, it follows that for s > 0,
A ∈ ω-ORCPn, T (t − s)f(s) ∈ D(K) and that KT (t − s)f(s) = T (t − s)Kf(s)
is integrable. Therefore v(t) defined by (3.16) satisfies v(t) ∈ D(K) for t > 0,
K ∈ ω-ORCPn and

(29) Kv(t) = K

∫ t

0
T (t− s)f(s)ds =

∫ t

0
T (t− s)Kf(s)ds.

is continuous. Then, the result follows from Theorem 3.3 which completes the
proof.

Theorem 3.5. Let K ∈ ω-OCPn be the infinitesimal generator of an analytic
semigroup {T (t); t ≥ 0} and let f ∈ Lp(0, T ;X) with 1 < p < ∞. Suppose u is
the mild solution of (2), then u is Hölder Continuous with exponent (p − 1)/p
on [ε, T ] for every ε > 0. Assume x ∈ D(K), then u is Hölder Continuous with
same exponent on [0, T ].
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Proof: Assume ‖T (t)‖ ≤M on [0, T ]. Since T (t) is an analytic semigroup, then
there is constant C such that ‖KT (t)‖ ≤ Ct−1 on [0, T ]. This implies that T (t)x
is Lipschitz continuous on [ε, T ] for any given ε > 0. If x ∈ D(K), K ∈ ω-OCPn,
and T (t) is Lipschitz continuous on [0, T ]. It suffices therefore to show that if

f ∈ LP (0, T ;X), 1 < p <∞ then v(t) =
∫ t

0 T (t− s)f(s)ds is Hölder Continuous
with the same exponent (p− 1)/p on [0, T ]. For h > 0, we have

v(t+h)−v(t) =

∫ t+h

t
T (t+h−s)f(s)ds+

∫ t

0
(T (t+h−s)−T (t−s))f(s)ds = I1+I2.

We estimate I1 and I2 separately. For I1, we use Hölder’s inequality to obtain,

(30)

‖I1‖ ≤M
∫ t+h

t
‖f(s)‖ds ≤Mh(p−1)/p

(∫ t+h

t
‖f(s)‖pds

) 1
p ≤M |f |ph(p−1)/p,

where |f |p = (
∫ T

0 ‖f(s)‖pds)
1
p is the norm of f in Lp(0, T ;X). In order to estimate

I2, for h > 0, we have

‖T (t+ h)− T (t)‖ ≤ 2M for t, t+ h ∈ [0, T ]

and

‖T (t+ h)− T (t)‖ ≤ Ch
t
for t, t+ h ∈ [0, T ].

Therefore

(31) ‖T (t+ h)− T (t)‖ ≤ C1µ(h, t) = C1 min
(

1,
h

t

)
for t, t+ h ∈ [0, T ],

where C1 is a constant satisfying C1 ≥ max(2M1C). Using (31) and Hölder’s
inequality, we have

(32) ‖I2‖ ≤ C1

∫ t

0
µ(h, t− s)‖f(s)‖ds ≤ C1|f |p

(∫ t

0
µ(h, t− s)p/(p−1)ds

)(p−1)/p
.

Since µ ≥ 0, we have

(33)

∫ t

0
µ(h, t− s)p/(p−1)ds =

∫ t

0
µ(h, τ)p/(p−1)dτ ≤

∫ ∞
0

µ(h, τ)p/(p−l)dτ = ph,

by combining (32) with (33), we find that

‖I2‖ ≤ Const.h(p−1)/p.

Hence the proof of the theorem �.
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Theorem 3.6. Let K ∈ ω-ORCPn be the infinitesimal generator of an analytic
semigroup {T (t); t ≥ 0}. Assume f ∈ L1(0, T ;X) and suppose that for every
0 < t < T , there exists a δ1 > 0 and a continuous real value function

Ωt(τ) : [0,∞]→ [0,∞]

such that

(34) ‖f(t)− f(s)‖ ≤ Ωt(|t− s|),
and

(35)

∫ δ1

0

Ωt(τ)

τ
dτ <∞.

Then, for every x ∈ X, the mild solution of (2) is a classical solution.

Proof: Since T (t) is an analytic semigroup, then T (t)x is the solution of the
homogeneous equation with initial data x for every x ∈ X. To show that the
theorem is sufficient, by Theorem 3.3, we need to prove that

v(t) =

∫ t

0
T (t− s)f(s)ds ∈ D(K) for 0 < t < T

and that Kv(t) is continuous on this interval. To this end, we have

(36)

v(t) = v1(t) + v2(t)

=

∫ t

0
T (t− s)(f(s)− f(t))ds+

∫ t

0
T (t− s)f(t)ds.

Suppose v2(t) ∈ D(K) and that Kv2(t) = (T (t) − I)f(t). By assumption of
the theorem, its implies that f is continuous on [0, T ], it follows that Kv2(t) is
continuous on [0, T ]. To prove the same conclusion for v1, we define

(37) v1.ε(t) =

∫ t−ε

0
T (t− s)(f(s)− f(t))ds for t ≥ ε

and

(38) v1.ε(t) = 0 for t < ε.

From (37) and (38), it is clear that v1.ε(t)→ v1(t) as ε→ 0. It is also clear that
v1.ε ∈ D(K) and for t ≥ ε, we have

(39) Kv1.ε(t) =

∫ t−ε

0
KT (t− s)(f(s)− f(t))ds.
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From (34) and (35), it follows that for t > 0, Kv1.ε(t) converges as ε → 0 and
that

(40) lim
ε→0

Kv1.ε(t) =

∫ t−ε

0
KT (t− s)(f(s)− f(t))ds.

The closeness of K then implies that v1(t) ∈ D(K) for t > 0, we have

(41) Kv1(t) =

∫ t

0
KT (t− s)(f(s)− f(t))ds.

To conclude the proof, we have to show that Kv1(t) is continuous on [0, T ] for
0 < δ < t, hence

(42) Kv1(t) =

∫ δ

0
KT (t− s)(f(s)− f(t))ds+

∫ t

δ
KT (t− s)(f(s)− f(t))ds.

For fixed δ > 0, the second integral on the right of (42) is a continuous function
of t while the first integrals is of O(δ) uniformly in t. Thus, K1(t) is continuous
and the proof is complete �.

Theorem 3.7. Let K ∈ ω-OCPn be the infinitesimal generator of an analytic
semigroup {T (t); t ≥ 0} and suppose f ∈ Cζ([0, T ];X), if

(43) v1(t) =

∫ t

0
T (t− s)(f(s)− f(t))ds,

then v1 ∈ D(K) for 0 ≤ t ≤ T and Kv1(t) ∈ Cζ([0;T ] : X).

Proof: The fact that v1 ∈ D(K) for 0 ≤ t ≤ T is an immediate consequence of
the proof of Theorem 3.6, hence, we only need to prove the Hölder Continuity of
Kv1(t). Suppose that ‖T (t)‖ ≤M on [0, T ] and that

(44) ‖KT (t)‖ ≤ Ct−1 for 0 < t ≤ T.

Thus, for every 0 < s < t ≤ T , we have

(45)

‖KT (t)−KT (s)‖ =
∥∥∥∫ t

s
K2T (τ)dτ

∥∥∥ ≤ ∫ t

s
‖K2T (τ)‖dτ

≤ 4C

∫ t

s
τ−2dτ = 4Ct−1s−1(t− s).

Let t ≥ 0 and h > 0, then
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(46)

Kv1(t+ h)−Kv1(t) = K

∫ t

0
(T (t+ h− s)− T (t− s))(f(s)− f(t))ds

+K

∫ t

0
T (t+ h− s)(f(t)− f(t+ h))ds

+K

∫ t+h

t
T (t+ h− s)(f(s)− f(t+ h))ds

= I1 + I2 + I3.

We estimate each of the the three terms separately, first from (4) and (45),

(47)

‖I1‖ ≤
∫ t

0
‖KT (t+ h− s)−KT (t− s)‖‖f(s)− f(t)‖ds

≤ 4CLh

∫ t

0

ds

(t− s+ h)(t− s)1−ζ ≤ C1h
ζ .

To estimate I2, we refer to Definition 2.8 and Definition 2.9 so that

(48)
‖I2‖ = ‖(T (t+ h)− T (h))(f(t)− f(t+ h))‖

≤ ‖T (t+ h)− T (h)‖‖f(t)− f(t+ h)‖ < 2MIhζ .

Finally, to estimate I3, we use (44) and (4) to get

(49)

‖I3‖ ≤
∫ t+h

t
‖KT (t+ h− s)‖‖f(s)− f(t+ h)‖ds

≤ CL
∫ t+h

t
(t+ h− s)ζ−1ds ≤ C2h

ζ .

Combining (46) with estimates (47) and (48), we observe that Kv1(t) is Hölder
continuous with exponent ζ on [0, T ]. The proof is complete �.

Theorem 3.8. Suppose K ∈ ω-ORCPn is the infinitesimal generator of an an-
alytic semigroup {T (t); t ≥ 0} and let f ∈ Cζ([0, T ];X). If u is the solution of
IVP (3) on [0, T ] then:
(i) for every δ > 0, Ku ∈ Cζ([δ, T ] : X), hence du/dt ∈ ζ([δ, T ] : X);
(ii) if x ∈ D(K), hence Ku and du/dt are continuous on [0, T ]; and
(iii) if x = 0 and f(0) = 0, hence T (t)f(t) ∈ Cζ([δ, T ] : X).
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Proof: Since

(50) u(t) = T (t)x+

∫ t

0
T (t− s)f(s)ds = T (t− s)f(s)ds = T (t)x+ v(t).

and by (45), KT (t)x is Lipschitz continuous on δ ≤ t ≤ T , for every δ > 0, it
suffices to show that Kv(t) ∈ Cζ([δ, T ] : X). To this end, we decompose v as

v(t) = v1(t) + v2(t) =

∫ t

0
T (t− s)(f(s)− f(t))ds+

∫ t

0
T (t− s)f(t)ds.

From Theorem 3.7, it follows that Kv(t) ∈ C([0, T ];X), it remains to show that
Kv2(t) ∈ Cζ([δ, T ] : X) for δ > 0. But Kv2(t) = (T (t) − I)f(t) and since
f ∈ Cζ([0, T ];X), then we only have to show that T (t)f(t) ∈ Cζ([δ, T ] : X) for
every δ > 0. Let t ≥ δ and h > 0, then

(51)

‖T (t+ h)f(t+ h)− T (t)f(t)‖
≤ ‖T (t+ h)‖‖f(t+ h)− f(t)‖+ ‖T (t+ h)− T (t)‖‖f(t)‖

≤MLhζ +
C

δ
h‖f‖∞ ≤ C1h

ζ ,

here we used (31) and (4). Define

‖f‖∞ = max0≤t≤T ‖F (t)‖,
this complete the proof of (i). To prove (ii), we noted that if x ∈ D(K), then
KT (t)x ∈ C([0, T ];X). By Theorem 3.7, Kv1(t) ∈ Cζ([0, T ];X) and since f is
continuous on [0, T ], it remains to show that T (t)f(t) is continuous on [0, T ].
From (i) it is clear that T (t)f(t) is continuous on [0, T ]. The continuity at t = 0
follows readily from

‖T (t)f(t)− f(0)‖ ≤ ‖T (t)f(0)− f(0)‖+M‖f(t)− f(0)‖
and the proof of (ii) is complete. Finally, to prove (iii), in the case T (t)f(t) ∈
Cζ([0, T ];X), it follows that

(52)

‖T (t+ h)f(t+ h)− T (t)f(t)‖
≤ ‖T (t+ h)‖‖f(t+ h)− f(t)‖+ ‖T (t+ h)− T (t)f(t)‖

≤MLhζ + ‖
∫ t+h

t
KT (τ)f(t)dτ‖

≤MLhζ +

∫ t+h

t
‖KT (τ)(f(t)− f(0))‖dτ

≤MLhζ + CL

∫ t+h

t
τ−1tζdτ ≤MLhζ + CL

∫ t+h

t
τ ζ−1dτ ≤ Chζ .

which complete the proof �.
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Conclusions: The study presented some attributes of w−order preserving and
w−order reversing partial contraction mapping in semigroup of linear operators.
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