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Abstract

In this paper, we present the approximate solutions of fractional

relaxation-oscillation equations by using Aboodh Transform

Method (ATM). Some examples are considered to illustrate the

capability and reliability of the method. The solutions obtained

are presented in the form of rapidly convergent series with easily

computable terms. The results obtained by ATM are compared

with the exact solutions, the solutions obtained by Iterative

Decomposition Method (IDM), Optimal Homotopy Asymptotic

Method (OHAM) and Generalized Taylor Matrix Method

(GTM). The result revealed that the solutions obtained by ATM

which is found to be exactly the same as the solution obtained by

IDM are in good agreement with the known exact solutions and

solution obtained by OHAM, GTM. The applicability, reliability

and effectiveness of the proposed method are tested on three

examples and results show that the proposed method is more

effective and convenient to use and its high accuracy is evident.
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1. Introduction

Fractional differential equations (FDEs) are generalization of differential equa-
tions. Over the years FDE has become the focus of curiosity for many researchers
in exclusive disciplines of applied science and engineering due to the fact that a
realistic modelling of a physical phenomena can be efficiently executed by the
way of utilizing fractional differential equations. Fractional differential equations
have been applied in diverse fields such as psychology [3], bioengineering [15],
viscoelasticity, electrochemistry, Economics [19] among others. Most fractional
differential equation do not have exact analytical solutions and thus numerical
methods are developed and applied in solving them. Some of those numerical
methods are Adomian Decomposition Method [23], Variational iteration method
[7, 20], Homotopy perturbation method [21, 12, 13, 14], Differential Transform
Method, [4], Optimal Homotopy Analysis Method (OHAM) [11], Iterative De-
composition Method [18] and Generalized Taylor Matrix (GTM) [10] have been
developed.
A relaxation oscillator is a class of oscillator which is based on the behavior
of a physical system’s return to equilibrium after being distributed [17, 8, 9].
The relaxation-oscillation equation is the primary equation of relaxation and
oscillation process [25]. The standard relaxation equation in [5] is defined as

(1)
du

dx
+Bu (x) = f (x)

where B represents E
c , E is the elastic modulus, c is the viscosity coefficient and

f (x) represents the product of E and the strain rate. When equation (1) is
homogeneous i.e f (x) = 0, we obtain the analytic solution

(2) u (x) = ce−Bx

where c is the constant determined by the initial condition. The standard oscil-
lation equation is given by [11] as:

(3)
d2u

dx2
+Bu (x) = f(x)

where B = k
m = w, k represents the stiffness coefficient, m is the mass, w is

the angular frequency. When the equation (3) is homogeneous i.e f (x) = 0, the
resulting solution will be

(4) u (x) = Ccos
√
Bx+Dsin

√
Bx

where C and D are constants determined by the initial conditions. The fractional
derivatives are applied on the relaxation-oscillation models to indicate slow re-
laxation and damped oscillation [16]. The fractional-oscillation equation model
can be expressed as:

(5) D∝u (x) +Bu (x) = f (x) , x > 0
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with initial conditions:

(6) u (0) = a, if 0 <∝≤ 1

or u (0) = γ, and

(7) u1 (0) = β if 1 <∝≤ 2

where β is a positive constant. For 0 <∝≤ 2 this equation is called the frac-
tional relaxation equation. When 0 <∝≤ 1, the model represents relaxation with
power law attenuation. when1 <∝≤ 2, the model represents damped oscillation
with viscoelastic instrinsic damping of oscillator [24,6]. This class of fractional
model has been applied in electrical model of the heart [9], signal processing [24],
modelling cardiac pacemakers [6].
In this paper, we propose the Aboodh Transform Method (ATM) to approximate
the solution of fractional relaxation-oscillation equations. The method was intro-
duced by [1] and had been applied to the integer order differential equation such
as in [22, 2]. Unlike some of the previously mentioned numerical methods, the
ATM does not require discretization or linearization. This method is very helpful
in solving linear and nonlinear differential problems.
We examine the applicability, accuracy and efficiency of ATM by comparing our
results with those by other methods and the exact solutions for some examples
of fractional relaxation-oscillation equations.

2. Basic idea of Aboodh Transform Method (ATM)

To illustrate the basic idea of this method, we consider a general form of Fractional
Relaxation Oscillation Equation

(8) D∝u (x) +Bu (x) = f (x)

(9) u (0) = γ, and u1 (0) = β if 1 <∝≤ 2

Taking Aboodh transform on both sides of (8),

(10) A [D∝u (x) +Bu (x)] = A [f (x)]

Applying the linearity property of the Aboodh Transform on (10), we have

(11) A [D∝u (x)] +A [Bu (x)] = A [f (x)]

Using the differential property of Aboodh Transform

(12) v∝u (v)− u (0)

v2−∝ −
u1 (0)

v2−∝ +A [Bu (x)] = A [f (x)]

Substituting the initial conditions in equation (9) into equation (12), we obtain

(13) u (v) =
1

v∝

{
γ

v2−∝ +
β

v2−∝ +A [f (x)]−A [Bu (x)]

}
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(14) u (v) =
1

v∝

{
γ

v2−∝ +
β

v2−∝ +A [f (x)]

}
− 1

v∝
{A [Bu (x)]}

Taking Aboodh inverse on both sides of equation (14), we obtain

(15) u (x) = A−1

[
1

v∝

{
γ

v2−∝ +
β

v2−∝ +A [f (x)]

}]
−A−1

{
1

v∝
{A [Bu (x)]}

}
G (x) = A−1

[
1

v∝

{
γ

v2−∝ +
β

v2−∝ +A [f (x)]

}]
(16) u (x) = G (x)−A−1

{
1

v∝
{A [Bu (x)]}

}
where G (x) represent terms arising from the known function f (x) and the
prescribed initial conditions.

u0 (x) = G (x, t)

u1 (x) = −A−1

{
1

v∝
{A [Bu0 (x)]}

}
u2 (x) = − A−1

{
1

v∝
{A [u1 (x)]}

}
u3 (x) = − A−1

{
1

v∝
{A [u2 (x)]}

}
...

In general, the recursive relation is given by:

un (x) = A−1

{
− 1

v∝
{A [un−1 (x)]}

}
Then, the solution can be expressed as

(17) un (x) = u0 (x) (x, t) + u1 (x) (x, t) + u2 (x) + u3 (x) · · ·

3. Application

In this section, the Aboodh Transform Method is implemented for solving frac-
tional relaxation-oscillation equation. We illustrate the applicability and the
effectiveness of this method with three numerical examples. The results obtained
by the proposed method are compared with other known results.
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Example 1: Consider the fractional relaxation-oscillation equation in [18] as:

(18) D∝u (x) = −u (x) , 0 ≤ x ≤ 1, 1 ≤∝≤ 2

with initial conditions

(19) u (0) = 1, u1 (0) = 0

The exact solution is given as E∝ (−x∝) where E∝ (z) =
∑∞

k=0
zk

Γ(∝k+1) is the

Mittag-Leffler function of order α. Taking Aboodh Transform on both sides of
equation (18), we have

(20) A [D∝u (x)] = A [−u (x)]

using the differential property of the Aboodh transform, we obtain

(21) v∝u (v)− u (0)

v2−∝ −
u1 (0)

v2−∝ = A [−u (x)]

Substituting the initial conditions (19) into equation (21), we have

v∝u (v)− 1

v2−∝−
0

v3−∝ = A [−u (x)]

(22) u (v) =
1

v∝

{
1

v2−∝ −A [u (x)]

}
Now taking the Aboodh inverse on both sides of equation (22), we obtain

u (x) = A−1

{
1

v∝

{
1

v2−∝ −A [u (x)]

}}

(23) u (x) = 1−A−1

{
1

v∝
A [u (x)]

}
u0 (x) = 1

u1 (x) = −A−1

{
1

v∝
A [u0 (x)]

}
= −A−1

{
1

v∝
A [1]

}
u1 (x) = − x∝

Γ (∝ +1)

u2 (x) = −A−1

{
1

v∝
A [u1 (x)]

}
u2 (x) = −A−1

{
1

v∝
A

[
− x∝

Γ (∝ +1)

]}
u2 (x, t) =

x2∝

Γ (2 ∝ +1)
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u3 (x) = −A−1

{
1

v∝
A [u2 (x)]

}
u3 (x) = −A−1

{
1

v∝
A

[
x2∝

Γ (2 ∝ +1)

]}
u3 (x) = − x3∝

Γ (3 ∝ +1)

u4 (x) = −A−1

{
1

v∝
A [u3 (x)]

}
u4 (x) = −A−1

{
1

v∝
A

[
− x3∝

Γ (3 ∝ +1)

]}
u4 (x) =

x4∝

Γ (4 ∝ +1)

u5 (x) = −A−1

{
1

v∝
A [u4 (x)]

}
u5 (x) = −A−1

{
1

v∝
A

[
x4∝

Γ (4 ∝ +1)

]}
u5 (x) = − x5∝

Γ (5 ∝ +1)

...

un (x) = A−1

{
− 1

v∝
A [un−1 (x)]

}
The rest of the components of iteration formula can be obtained by following the
same procedure. Then, the solution u (x) is expressed as:

u (x) = u0 (x) + u1 (x) + u2 (x) + u3 (x) + u4 (x) + · · ·

(24)

{
u (x) = 1− x∝

Γ(∝+1) + x2∝

Γ(2∝+1) −
x3∝

Γ(3∝+1)+
x4∝

Γ(4∝+1) −
x5∝

Γ(5∝+1) + · · ·

Equation (24) which is the exact solution of (18) is the same as the solution
obtained in [18]. When ∝= 1, we obtain an approximate solution

(25) u (x) = 1− x

Γ (2)
+

x2

Γ (3)
− x3

Γ (4)
+

x4

Γ (5)
− x5

Γ (6)
+ · · ·

Thus, (25) can be written in the closed form as:

(26) u (x) = E1,∝ (−x∝)
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when ∝= 3
2 , then (24) becomes

(27) u (x) = 1− x3/2

Γ (5/2)
+

x5

Γ (4)
− x9/2

Γ (11/2)
+

x6

Γ (7)
− x15/2

Γ (17/2)
+ · · ·

Table 1: Numerical comparison between ATM approximate solution, exact solu-
tion, IDM solution, OHAM solution and GTM approximate solution for Example
1.

x Exact
Solution

Solution
by ATM

Error
ATM

Solution
IDM [18]

Error
IDM

Solution
OHAM
[11]

Error
OHAM

Solution
GTM
[10]

Error
GTM

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
0.1 0.976378 0.976377 9.8E-7 0.976377 9.8E-7 0.976388 1.032E-5 0.9763783 6.031E-7
0.2 0.934036 0.934034 1.829E-6 0.934034 1.829E-6 0.934057 2.096E-5 0.9340497 1.358E-5
0.3 0.880808 0.8808047 3.258E-6 0.8808047 3.258E-6 0.880831 2.292E-5 0.8808922 8.395E-5
0.4 0.820056 0.8200506 5.40E-6 0.8200506 5.40E-6 0.820071 1.48E-5 0.82036 3.037E-4
0.5 0.754049 0.7540407 8.31E-6 0.7540407 8.31E-6 0.754049 5.838E-7 0.7548718 8.23E-4
0.6 0.68453 0.6845192 1.08E-6 0.6845192 1.08E-6 0.684517 1.289E-5 0.6863845 1.854E-3
0.7 0.612922 0.6129079 1.41E-5 0.6129079 1.41E-5 0.612903 1.483E-5 0.6166007 3.679E-3
0.8 0.540417 0.5404134 3.60E-6 0.5404134 3.60E-6 0.540404 1.249E-5 0.547065 6.648E-3
0.9 0.468031 0.468040 9.0E-6 0.468040 9.0E-6 0.468031 4.365E-7 0.4792153 1.118E-2
1.0 0.396629 0.3966032 2.58E-5 0.3966032 2.58E-5 0.396632 2.577E-6 0.414413 1.77E-2

Example 2: Consider the fractional relaxation-oscillation equation in [18] as:

(28) D∝u (x) = −u (x) , 0 ≤ x ≤ 1, 0 ≤∝≤ 1

with initial conditions

(29) u (0) = 1

Taking Aboodh Transform on both sides of equation (28), we have

(30) A [D∝u (x)] = A [−u (x)]

using the differential property of the Aboodh transform, we obtain

(31) v∝u (v)− u (0)

v2−∝ = −A [u (x)]

Substituting the initial conditions (29) into (31) we have

v∝u (v)− 1

v2−∝ = −A [u (x)]

(32) u (v) =
1

v∝

{
1

v2−∝ −A [u (x)]

}
Now taking the Aboodh inverse on both sides of (32), we obtain

u (x) = A−1

{
1

v∝

{
1

v2−∝ −A [u (x)]

}}



58 O. O. Olubanwo, A. T. Talabi, O. A. Dehinsilu and O. S. Odetunde

(33) u (x) = 1−A−1

{
1

v∝
A [u (x)]

}
u0 (x) = 1

u1 (x) = −A−1

{
1

v∝
A [u0 (x)]

}
= −A−1

{
1

v∝
A [1]

}
u1 (x) = − x∝

Γ (∝ +1)

u2 (x) = −A−1

{
1

v∝
A [u1 (x)]

}
u2 (x) = −A−1

{
1

v∝
A

[
− x∝

Γ (∝ +1)

]}
u2 (x, t) =

x2∝

Γ (2 ∝ +1)

u3 (x) = −A−1

{
1

v∝
A [u2 (x)]

}
u3 (x) = −A−1

{
1

v∝
A

[
x2∝

Γ (2 ∝ +1)

]}
u3 (x) = − x3∝

Γ (3 ∝ +1)

u4 (x) = −A−1

{
1

v∝
A [u3 (x)]

}
u4 (x) = −A−1

{
1

v∝
A

[
− x3∝

Γ (3 ∝ +1)

]}
u4 (x) =

x4∝

Γ (4 ∝ +1)

u5 (x) = −A−1

{
1

v∝
A [u4 (x)]

}
u5 (x) = −A−1

{
1

v∝
A

[
x4∝

Γ (4 ∝ +1)

]}
u5 (x) = − x5∝

Γ (5 ∝ +1)
...

un (x) = A−1

{
− 1

v∝
A [un−1 (x)]

}
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The rest of the components of iteration formula can be obtained by following the
same procedure. Then, the solution u (x) is expressed as:

u (x) = u0 (x) + u1 (x) + u2 (x) + u3 (x) + u4 (x) + · · ·

(34)

{
u (x) = 1− x∝

Γ(∝+1) + x2∝

Γ(2∝+1) −
x3∝

Γ(3∝+1)+
x4∝

Γ(4∝+1) −
x5∝

Γ(5∝+1) + · · ·

Equation (34) which is the exact solution of (28) is the same as the solution
obtained in [18]. (34) can also be written as:

(35)

∞∑
n=0

(−1)nxn∝

Γ (nα+ 1)

when ∝= 1
2 , then (34) becomes

(36) u (x) = 1− x
1
2

Γ
(

3
2

) + x − x
3
2

Γ
(

5
2

) +
x2

Γ (3)
− x

5
2

Γ
(

7
2

) +
x3

Γ (4)

Table 2: Numerical comparison between ATM approximate solution, exact so-
lution, IDM approximate solution, OHAM approximate solution and GTM ap-
proximate solutions in Example 2 for α = 1

2 .
x Exact ATM Error

ATM
IDM [18] Error

IDM
OHAM
[11]

Error
OHAM

GTM
[10]

Error
GTM

0.0 1.000000 1.000000 0.00000 1.000000 0.00000 1.000000 0.00000 1.000000 0.0000
0.1 0.723578 0.723566 1.20E-5 0.723566 1.20E-5 0.723428 1.508E-4 0.7236019 2.355E-5
0.2 0.643788 0.643771 1.7E-5 0.643771 1.7E-5 0.643727 6.078E-5 0.6440406 2.523E-4
0.3 0.592018 0.592064 4.6E-5 0.592064 4.6E-5 0.592093 7.485E-5 0.5930206 1.002E-3
0.4 0.553606 0.553684 7.8E-5 0.553684 7.8E-5 0.553738 1.313E-4 0.5562613 2.655E-3
0.5 0.523157 0.523182 2.5E-5 0.523182 2.5E-5 0.523257 1.00E-4 0.5287949 5.638E-3
0.6 0.498025 0.497935 9.0E-5 0.497935 9.0E-5 0.498038 1.357E-5 0.508438 1.041E-2
0.7 0.476703 0.476533 1.7E-4 0.476533 1.7E-4 0.476623 7.979E-5 0.4941725 1.746E-2
0.8 0.458246 0.454982 3.26E-3 0.454982 3.26E-3 0.45812 1.256E-4 0.4855662 2.732E-2
0.9 0.442021 0.441421 6.0E-4 0.441421 6.0E-4 0.441953 6.811E-4 0.4825183 4.049E-2
1.0 0.427584 0.420460 7.124E-3 0.420460 7.124E-3 0.427731 1.478E-4 0.4851336 5.755E-2

Example 3: Consider the fractional relaxation-oscillation equation in [11] as:

(37) D∝u (x) = u (x) + 1, x > 0, 0 ≤∝≤ 1

with initial conditions

(38) u (0) = 0

Taking Aboodh Transform on both sides of (37), we have

(39) A [D∝u (x)] = A [u (x) + 1]
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using the differential property of the Aboodh transform, we obtain

(40) v∝u (v)− u (0)

v2−∝ = A [u (x)] +A [1]

Substituting the initial conditions (38) into (40), we have

v∝u (v)− 0

v2−∝ = A [u (x)]+
1

v2

(41) u (v) =
1

v∝

{
1

v2
+A [u (x)]

}
Now taking the Aboodh inverse on both sides of (41), we obtain

u (x) = A−1

{
1

v∝

{
1

v2
+A [u (x)]

}}

(42) u (x) = A−1

{
1

v∝+2

}
+A

−1{ 1

v∝
A [u (x)]

}
u0 (x) =

x∝

Γ (∝ +1)

u1 (x) = A−1

{
1

v∝
A [u0 (x)]

}
= A−1

{
1

v∝
A

[
x∝

Γ (∝ +1)

]}
u1 (x) =

x2∝

Γ (2 ∝ +1)

u2 (x) = A−1

{
1

v∝
A [u1 (x)]

}
u2 (x) = A−1

{
1

v∝
A

[
x2∝

Γ (2 ∝ +1)

]}
u2 (x, t) =

x3∝

Γ (3 ∝ +1)

u3 (x) = A−1

{
1

v∝
A [u2 (x)]

}
u3 (x) = A−1

{
1

v∝
A

[
x3∝

Γ (3 ∝ +1)

]}
u3 (x) =

x4∝

Γ (4 ∝ +1)

u4 (x) = A−1

{
1

v∝
A [u3 (x)]

}
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u4 (x) = A−1

{
1

v∝
A

[
x4∝

Γ (4 ∝ +1)

]}
u4 (x) =

x5∝

Γ (5 ∝ +1)

u5 (x) = A−1

{
1

v∝
A [u4 (x)]

}
u5 (x) = A−1

{
1

v∝
A

[
x5∝

Γ (5 ∝ +1)

]}
u5 (x) =

x6∝

Γ (6 ∝ +1)
...

un (x) = A−1

{
1

v∝
A [un−1 (x)]

}
The rest of the components of iteration formula can be obtained by following the
same procedure. Then, the solution u (x) is expressed as:

u (x) = u0 (x) + u1 (x) + u2 (x) + u3 (x) + u4 (x) + · · ·

(43)

{
u (x) = x∝

Γ(∝+1) + x2∝

Γ(2∝+1) + x3∝

Γ(3∝+1)+
x4∝

Γ(4∝+1) + x5∝

Γ(5∝+1) + · · ·

Equation (43) which is the exact solution of (37) is the same as the solution
obtained in [11]. When ∝= 1

2 , then (43) becomes

(44) u (x) =
x1/2

Γ (3/2)
+ x+

x3/2

Γ (5/2)
+

x2

Γ (3)
+

x5/2

Γ (7/2)
+ · · ·

when ∝= 3
4 , then (44) becomes

(45) u (x) =
x3/4

Γ (7/4)
+

x3/2

Γ (5/2)
+

x9/4

Γ (13/4)
+

x3

Γ (4)
+

x15/4

Γ (19/4)
+ · · ·
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Table 3: Numerical comparison between the ATM Approximation, the Exact
Solution and OHAM approximate solution when ∝= 1

2 for equation (37).
x [] Exact Solution ATM Approximation Error of ATM OHAM Approxima-

tion[11]
Error of OHAM

0.0 0.0000000 0.00000000 0.00000 0.0000000 0.0000
0.1 0.4867634 0.48677499 1.159E-5 0.4863604 4.0296E-4
0.2 0.7990172 0.79903478 1.758E-5 0.7996824 6.6517E-4
0.3 1.1076992 1.10779114 9.194E-5 1.1080854 3.8621E-4
0.4 1.4300431 1.43006980 2.67E-5 1.4295176 5.2551E-4
0.5 1.7742859 1.774312181 2.628E-5 1.7730313 1.2546E-4
0.6 2.1462130 2.146226287 1.329E-5 2.1449059 1.3071E-3
0.7 2.5508027 2.550773545 2.9155E-5 2.5501704 6.321E-4
0.8 2.9928358 2.992703315 1.325E-4 2.9931588 3.2291E-4
0.9 3.4771848 3.476833805 3.509E-4 3.4777623 5.7752E-4
1.0 4.0089800 4.008208376 7.716E-4 4.0075620 1.4180E-3

Table 4: Numerical comparison between the ATM Approximation, the Exact
Solution and OHAM approximate solution when ∝= 3

4 for equation (37).

x Exact So-
lution

ATM
approxima-
tion

Error of
ATM

OHAM
Approxima-
tion
[11]

Error of
OHAM

0.0 0.0000000 0.0000000000 0.000000 0.0000000 0.00000
0.1 0.2196607 0.2196534915 7.2085E-6 0.2195919 6.8743E-5
0.2 0.4046766 0.404666352 1.1248E-5 0.4046341 4.2490E-5
0.3 0.5960496 0.5960354041 1.4196E-6 0.5960616 2.0633E-6
0.4 0.8004557 0.8004391156 1.6544E-5 0.8004642 8.6318E-6
0.5 1.0217199 1.021701767 1.8133E-5 1.0216937 2.6338E-5
0.6 1.2629144 1.262893332 2.1068E-5 1.26281424 7.2067E-5
0.7 1.5269227 1.526902045 2.066E-5 1.5268333 8.9360E-5
0.8 1.8166648 1.816643316 2.148E-5 1.8166053 5.9557E-5
0.9 2.1352133 2.135158828 5.447E-5 2.1351973 1.5736E-5
1.0 2.4858662 2.485843317 2.288E-5 2.4857900 7.6170E-5

Conclusion

In this paper, Aboodh Transform Method (ATM) was used to obtain the approx-
imate solution of fractional relaxation-oscillation equations. The results obtained
are very close to the exact solutions which is exactly the same as the IDM ap-
proximate solution. However, the result of the ATM approximate solution are
compared with other previously applied methods such as OHAM and GTM .
The result obtained validate the efficiency and accuracy of the proposed method
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for solving fractional differential equations. The method is easy to apply and
accuracy can be improved by increasing the number of approximating series.
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