
Nigerian Journal of Mathematics and Applications
V olume 26, (2017), 113− 127. P rinted by Unilorin press
c©Nig. J. Math. Appl. http : //www.njmaman.com

Numerical Integration of Seventh order Boundary Value Problems by
Standard Collocation Method via Four Orthogonal Polynomials
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F. A. Adebisi2

Abstract

Based on standard collocation technique, four (4) different

orthogonal polynomials were used as basis functions in the

numerical treatment of seventh (7th) order boundary value

problems in Ordinary Differential Equations. The perfor-

mance of each of these polynomials as basis function in

the trial solution was then compared. The results obtained

from three examples showed that Chebyshev polynomial is

the best in term of performance, and closely followed by

Hermites polynomial, which was followed by Legendre poly-

nomial while the least in performance is Laguerre polynomial.

1. Introduction

Seventh order boundary value problems appear in several branches of applied
mathematics and engineering sciences. For example, problems that arise in Math-
ematics modeling of induction motors with two rotor circuits, induction motor
model contains fifth order differential equation model, which includes two stator
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variables, two rotor state variables and shaft speed (Ghazala and Hamood, 2014).
For the effect of a starting cage, deep bars or rotor distributed parameter, addi-
tional rotor circuit is required so that two more state variables and two equations
may be added. Additional state variable create computational burden. To avoid
this, models are often limited to the fifth order and rotor impendence is alge-
braically altered as function of rotor speed to account for torque discrepancies at
startup. This is done by the assumption of frequency of rotot currents depends
on rotor speed. Fifth order model running near full speed subjected to sudden
voltage dip, would not reproduce the transient drag torque produced by station-
ary flux linkage trapped in the stator windings, although such behavior would
show up in the seventh order model. Many researchers have solved seventh order
BVPs using different methods. Siddiqi et. al. (2012) solved these using Vari-
ation of parameters method, Differential transformation method and Variation
iteration technique. Reproducing kernel space method was used by Haar (2017).
Siddiqi and Muzammal (2013) also also used Adomian Decomposition Method
for solution of seventh order boundary Value problems. The pitfalls of the above
mentioned methods is that they take more time in terms of computation even
the Adomian package program is very expensive. The researcher is still using
standard collocation method because of its simplicity in terms of computation
and better CPU.
Orthogonal polynomials play an important role in mathematics and in physics, of-
ten as solution to differential equation or eigen functions of differential operators.
The widely used orthogonal polynomials are the classical orthogonal polynomials,
consisting of the Hermite polynomials, Laguerre polynomials, the Jacobi polyno-
mials together with their special cases, the Gegenbauer polynomials, Chebyshev
polynomials, Legendre polynomial (Yisa, 2015a).
The usefulness of various type of orthogonal polynomials like Hermites, Cheby-
shev, Legendre and Laguerre polynomials can never be over emphasized. This is
evidenced in the works of many scientists like, Gauss in his popular integration
method called Gauss Quadrature formula, where he derived the nodes for any
given problem by equating to zero the polynomial of equivalent order, mostly
Legendre. Lanczos (1938, 1956) [8] elucidated more of on the properties of these
polynomials and came to the conclusion that chebyshev polynomial is the best,
considering the mini-max property of the latter in the error propagation.
Here, we use four frequently encountered orthogonal polynomials namely, Her-
mite, Chebyshev, Legendre and Laguerre polynomial as basis functions. We
compare their results to determine the order of their responsiveness.
Here, we consider the seventh order BVPs of the form

y(7)(x) + f(x)y(x) = r(x), x ∈ (a, b)

subject to the following conditions
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y(x0) = α, y(xn) = β, y(1)(x0) = α,

y(1)(xn) = β′, y(2)(x0) = α′

y(2)(xn) = β′′, y(3)(x0) = α′′

This article is organized as follows: Section 2 deals with orthogonal polyno-
mials, Section 3 is on the methodology, numerical examples are considered in
section 4 while Section 5 concludes the work.

2. Orthogonal Polynomials

Consider the polynomial

QN (x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + aNx
N

where N = 0, 1, 2, · · · and an ∈ R
Two functions Qn(x) and Qm(x) are orthogonal if the inner product

< Qn(x), Qm(x) >= 0, n 6= m

That is, if ∫ b

a
w(x)Qn(x)Qm(x)dx = 0

where w(x) is the weight function and a and b, are constants.

2.1 Properties of Orthogonal Polynomials.

(1) Any polynomial f(x) of degree n can be expanded in terms of p0(x),
p1(x), · · · , pn(x), that is, there exist coefficients ai such that

f(x) =
n∑

i=0

aipi(x)

(2) Given an orthogonal set of polynomial {p0(x), p1(x), · · · }, each polyno-
mial, pk(x) is orthogonal to any polynomial of degree < k

(3) Any orthogonal set of poynomials {p0(x), p1(x), · · · }, has a recurrence
formula that relates any three consecutive polynomial in the sequence,
that is , the relation pn+1 = (anx + bn)pn − cnpn−1 exists, where the
coefficients a, b and c depend on n. Such a recurrence formula is often
used to generate higher order members in the set

(4) Each polynomial in {p0(x), p1(x), · · · } has all n of its roots real, distinct
and strictly within the interval of orthogonality (i.e not on its ends).
This is an extremely unusual property! It is particularly important when
considering the classes of polynomials that arise as quantum mechanical
solutions to a given Hamiltonian (or other Hermitian)operator
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(5) Furthermore the roots of the nth degree polynomial, pn lie strictly inside
the roots of the (n+ 1)th degree polynomial pn+1

In what now follows, we shall briefly define the Orthogonal polynomials
adopted in this work.

2.2 Some Orthogonal Polynomials

2.2.1 Hermite Polynomial [1]

Hermite polynomial was named in honour of Charles Hermite (1882 - 1901).
The Hermite polynomials are orthogonal in the interval (−∞,∞) with respect to

the weight function w(x) = e−x
2
. They are defined by means of their Rodrigue

formula

Hn(x) = (−1)ne−x
2 dn

dxn
e−x

2

and the recurrence formula is given as

Hn+1(x) = 2xHn(x)− 2nHn−1(x) where n = 1, 2, · · ·

2.2.2 Laguerre Polynomial [2]

Laguerre polynomial was named in honour of Edmond Laguerre (1834 - 1885).
Laguerre polynomials are orthogonal in the interval (0,∞) with respect to the
weight fuction w(x) = ex. It is given by Rodrigue formula

Ln(x) = ex
dn

dxn
xne−x where n = 1, 2, · · ·

and the recureence formula is given as

Ln+1(x) = (x− 2n− 1)Ln(x) + n2Ln−1(x)

2.2.3 Chebyshev Polynomial [8]

The Chebyshev polynomials named after a Russian Mathematics, Pafnuty
Lvovich Chebyshev (1821 - 1892). The Chebyshev polynomials of the first kind
denoted by Tn(x) are sets of polynomials degree n defined as the solution to the
first kind Chebyshev differential equation

(1− x2)y′′ − xy′ + n2y = 0

A Chebyshev polynomial of degree n of the first kind is defined as

Tn(x) = cos(n cos−1 x, x ∈ [−1, 1]

and the recurrence relation is given by

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1
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Also, in a ≤ x ≤ b, the Chebyshev polynomial is defined as

Tn(x) = cos

[
n cos

(
2x− a− b
b− a

)]
, x ∈ [a, b]

and satisfies the recurrence relation;

Tn+1(x) = 2

(
2x− a− b
b− a

)
Tn(x)− Tn−1(x), n ≥ 0, x ∈ [a, b]

2.2.4 Legendre Polynomial [2]

The Legendre Polynomial was introduced in 1784 by a French Mathematician,
Legendre A.M. (1752 - 1833).The Legendre Polynomial is defined and denoted
by

pn+1(x) =
1

n+ 1
{(2n+ 1)xpn(x)− npn−1(x)}

and pn(x) is expressed by Rodrigue’s formula

pn(x) =
dn

2nn!dxn
(x2 − 1)n ; n = 0, 1, 2, · · ·

2.3 Co-ordinate Transformation and Shifted Orthogonal
Polynomial

In order to shift from the interval [−1, 1] to the interval [a, b], let

y = mx+ n

a = −m+ n

b = m+ n

Add equation (18) and (19) we have

2n = a+ b

n =
a+ b

2

Putting (21) in (19) and simplify to obtain

m =
a− b

2

Substituting (21) and (22) in (17), we have

x =
2y − (a+ b)

b− a



118 K. A. Bello, O. A. Taiwo, A. Abdulkareem, J. U. Abubakar and F. A. Adebisi

2.3.1 Shifted Chebyshev Polynomial [9]

Shifed Chebyshev Polynomial are orthogonal on [0, 1]. And it has rodrigue
formula

T ∗n(x) = cos{n cos−1(2x− 1)}
And recurrence relation

T ∗n+1(x) = 2(2x− 1)Tn(x)− Tn−1(x)

2.3.2 Shifted Legendre Polynomial [5]

Shifted Legendre Polynomial are orthogonal on interval [0, 1]. They are define
by means of their rodrigue formula

pn(x) =
1

2nn!

dn

dxn
(x2 − x)n where n = 1, 2, · · ·

and the recurrence formula is given as

pn(x) =
(2x− 1)(2n+ 1)

n+ 1
pn(x)− n

n+ 1
pn−1(x), where n = 1, 2, · · ·n

3 Methodology

Here, we assumed an approximate solution of the form

y(x) ≈ yn(x) =
n∑

i=0

aiQi(x)

where Qi(x) is orthogonal polynomial.
Substituting (28) in (1) and (2) to obtain

d7

dx7

{
n∑

i=0

aiQi(x)

}
+ f(x)

{
n∑

i=0

aiQi(x)

}
= r(x)

and
n∑

i=0

aiQi(x0) = α,

n∑
i=0

aiQi(xn) = β,

n∑
i=0

aiQ
′
i(x0) = α′,

n∑
i=0

aiQ
′
i(xn) = β′

n∑
i=0

aiQ
′′
i (x0) = α′′,

n∑
i=0

aiQ
′′
i (xn) = β′′,

n∑
i=0

aiQ
′′′
i (x0) = α′′′

Equation (29) is simplified to get

d7

dx7
(a0Q0(x) + a1Q1(x) + a2Q2(x) + · · · anQn(x))

+ f(x)(a0Q0(x) + a1Q1(x) + a2Q2(x) + · · · anQn(x)) = r(x)
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and[(
d7

dx7
+ f(x)

)
Q0(x)

]
a0 +

[(
d7

dx7
+ f(x)

)
Q1(x)

]
a1 +

[(
d7

dx7
+ f(x)

)
Q2(x)

]
a2

+ · · ·+
[(

d7

dx7
+ f(x)

)
Qn(x)

]
an = r(x)

Equation(32) is collocated at xj as

[(
d7

dx7
+ f(xj)

)
Q0(xj)

]
a0 +

[(
d7

dx7
+ f(xj)

)
Q1(xj)

]
a1 +

[(
d7

dx7
+ f(xj)

)
Q2(xj)

]
a2

+ · · ·+
[(

d7

dx7
+ f(xj)

)
Qn(xj)

]
an = r(xj)

where

xj = aj +
(b− a)j

N + 1
, j = 1, 2, 3, · · · , N

Equation (33), after collocation, is put in matrix form as
( d7

dx7 + f(x1))Q0(x1) ( d7

dx7 + f(x1))Q0(x1) · · · ( d7

dx7 + f(x1))Q0(x1)

( d7

dx7 + f(x2))Q0(x2) ( d7

dx7 + f(x2))Q0(x2) · · · ( d7

dx7 + f(x2))Q0(x2)
...

...
...

( d7

dx7 + f(xn))Q0(xn) ( d7

dx7 + f(xn))Q0(xn) · · · ( d7

dx7 + f(xn))Q0(xn)



a0
a1
...
an

 =


r(x1)
r(x2)

...
r(xn)


Equation (35) will give (N − (n− 1)) system of algebraic equations.
Also N equations are derived from the seven initial conditions, thus,

yn(x0) = a0Q0(x0) + a1Q1(x0) + a2Q2(x0) + · · ·+ anQn(x0) = α

yn(xn) = a0Q0(xn) + a1Q1(xn) + a2Q2(xn) + · · ·+ anQn(xn) = β

y(1)n (x0) = a0Q
(1)
0 (x0) + a1Q

(1)
1 (x0) + a2Q

(1)
2 (x0) + · · ·+ anQ

(1)
n (x0) = α′

y(1)n (xn) = a0Q
(1)
0 (xn) + a1Q

(1)
1 (xn) + a2Q

(1)
2 (xn) + · · ·+ anQ

(1)
n (xn) = β′

y(2)n (x0) = a0Q
(2)
0 (x0) + a1Q

(2)
1 (x0) + a2Q

(2)
2 (x0) + · · ·+ anQ

(2)
n (x0) = α′′

y(2)n (xn) = a0Q
(2)
0 (xn) + a1Q

(2)
1 (xn) + a2Q

(2)
2 (xn) + · · ·+ anQ

(2)
n (xn) = β′′

y(3)n (x0) = a0Q
(3)
0 (x0) + a1Q

(3)
1 (x0) + a2Q

(3)
2 (x0) + · · ·+ anQ

(3)
n (x0) = α′′′
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Equation (36) are also put in matrix form as

Q0(x0) Q1(x0) · · · Qn(x0)
Q0(xn) Q1(xn) · · · Qn(xn)

Q
(1)
0 (x0) Q

(1)
1 (x0) · · · Q

(1)
n (x0)

Q
(1)
0 (xn) Q

(1)
1 (xn) · · · Q

(1)
n (xn)

Q
(2)
0 (x0) Q

(2)
1 (x0) · · · Q

(2)
n (x0)

Q
(2)
0 (xn) Q

(2)
1 (xn) · · · Q

(2)
n (xn)

...
...

...

Q
(n)
0 (x0) Q

(n)
1 (x0) · · · Q

(n)
n (x0)

Q
(n)
0 (xn) Q

(n)
1 (xn) · · · Q

(n)
n (xn)





a0
a1
a2

...

...

...

an


=



α
β
α′

β′

α′′

β′′

...

α(n)

β(n)


Equation (35) and (37) are combined to give (N + 1) system of equations. This
system ofN+1 equations are then solved simultaneously to obtained the unknown
constants aj , j = 0, 1, 2, · · · , n which are substituted back into the trial solution
to obtain the required approximate solutions

4 Numerical Examples

Example 1
Consider the linear seventh order boundary value problem

d7y

dx7
= xy(x) + ex(x2 − 2x− 6)

y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = −2, y(1) = 0,

y′(1) = −e, y′′(1) = −2e

The exact solution of the problem is given as

y(x) = (1− x)ex

Solution. Here, we demonstrate the methodology using Hermite polynomial
Let

y ∼= yN (x)

N∑
n=0

anHn(x)

where Hn are Hermite polynomials
Substituting (41) into (38) and (39) respectively, then we have;

d7

dx7

(
N∑

n=0

anHn(x)

)
= x

(
N∑

n=0

anHn(x)

)
+ ex(x2 − 2x− 6)

yN (0) = 1, y′
N

(0) = 0, y′′
N

(0) = −1, y′′′
N

(0) = −2, yN (1) = 0,

y′
N

(1) = −e, y′′
N

(1) = −2e
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Choosing N = 7, then (41) becomes

y7(x) = a0H0(x) + a1H1(x) + a2H2(x) + a3H3(x) + a4H4(x) + a5H5(x)

+ a6H6(x) + a7H7(x)

i.e

y7(x) = a0 + 2xa1 + a2(4x
2 − 2) + a3(8x

3 − 12x) + a4(16x4 − 48x2 + 12)

+ a5(32x5 − 160x3 + 120x) + a6(64x6 − 480x4 + 720x2 − 120)

+ a7(128x7 − 1344x5 + 3360x3 − 1680x)

Substituting (44) into (38) and after simplification we obtained

645120a7 = x(a0 + 2a1(x) + a2(4x
2 − 2x) + a3(8x

3 − 12x) + a4(16x4 − 48x2 + 12)

+ a5(32x5 − 160x3 + 120x) + a6(64x6 − 480x4 + 720x2 − 120)

+ a7(128x7 − 1344x5 + 3360x3 − 1680x)) + 2.718281828x(x2 − 2x− 6)

now collocating (45) using

xi = a+
(b− a)i

N + 1
i = 1, 2, ..., [N − (n− 1)]

when i=1, x1 = 1
8 we obtain;

645120a7 = 0.125a0 + 0.031250a1 − 0.023437500a2 − 0.1855468750a3 + 1.406738281a4

+ 1.836059570a5 − 13.60836792a6 − 25.43480682a7 − 7.06447238

(46) is written in matrix form as

(
0.125 0.031250 −0.023437500 −0.1855468750 1.406738281 1.836059570 −13.60836792 −645145.43480682

)


a0
a1
a2
a3
a4
a5
a6
a7



(1) = 7.06447238

which is one algebraic equations with 8 unknowns. The remaining 7 equations
are derived from the 7 initial conditions. i.e.,

y′7(x) = 2a1 + 8xa2 + a3(24x2 − 12) + a4(64x3 − 96x)

+ a5(160x4 − 480x2 + 120) + a6(384x5 − 1920x3 + 1440x)

+ a7(896x6 − 6720x4 + 10080x2 − 1680)
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y′′7(x) = 8a2 + 48xa3 + a4(192x2 − 96) + a5(640x3 − 960x)

+ a6(1920x4 − 5760x2 + 1440) + a7(5376x5 − 26880x3 + 20160x)

y′′′7 (x) = 48a3 + 384xa4 + a5(1280x2 − 960) + a6(7680x3 − 11520x)

+ a7(26880x4 − 80640x2 + 20160)

yiv7 (x) = 384a4 + 2560xa5 + a6(23040x2 − 11520) + a7(107520x3 − 161280x)

(2)

yv7(x) = 2560a5 + 46080xa6 + a7(322560x2 − 161280)(3)

yvi7 (x) = 46080a6 + 645120xa7(4)

yvii7 (x) = 645120a7(5)

Thus,

y(0) = 1;⇒ a0 + 12a4 − 120a6 = 1

(6)

y′(0) = 0;⇒ 2a1 − 2a2 − 12a3 + 120a5 − 1680a7 = 0

(7)

y′(0) = −1;⇒ 8a2 − 96a4 + 1440a6 = −1

(8)

y′′′(0) = 2;⇒ 48a3 − 960a5 + 20160a7 = −2

(9)

y(1) = 0;⇒ a0 + 2a1 + 2a2 − 4a3 − 20a4 − 8a5 + 184a6 + 464a7 = 0
(10)

y′(1) = −e;⇒ 2a1 + 6a2 + 12a3 − 32a4 − 200a5 − 96a6 + 2576a7 = −2.718281828

(11)

y′′(1) = −2e;⇒ 8a2 + 48a3 + 96a4 − 320a5 − 2400a6 − 1344a7 = −5.436563657

(12)

Also, putting (51) to (65) in matrix form, we obtained,

1 0 0 0 120 0 −120 0
0 2 −2 −12 0 120 0 −1680
0 0 80 0 −96 0 1440 0
0 0 0 48 0 −960 0 20160
1 2 2 −4 −20 −8 184 464
0 2 6 12 −32 −200 −96 2576
0 0 2 48 96 −320 −2400 1344





a0
a1
a2
a3
a4
a5
a6
a7


=



1
0
−1
−2
0

−2.718281828
−5.436563657
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solving the system (62) and (47) simultaneously using MAPPLE software we get,

a0 = 1.122958872 , a1 = −0.5599818551 , a2 = −0.2407495784 ,

a3 = −0.06625028456 , a4 = −0.01144812150 , a5 = −0.001455109745 ,

a6 = −0.0001201548869 , a7 = −0.00001075851669

substituting the values of (63) into (41), we obtain our approximate solution;

y(x) = 1 + 5× 10−10x− 0.5x2 − 0.3333333334x3 − 0.1254955983x4

− 0.03210406541x5 − 0.007689912762x6 − 0.001377090136x7

Following the procedure of the methodology, the approximate solution obtained
for Laguerre, Chebyshev and Legendre Polynomial respectively are as follows:

yL(x) = 0.9999999997− 1.1× 10−7x− 0.50000034x2 − 0.33333319x3

− 0.12549582x4 − 0.032103433x5 − 0.00769054484x6 − 0.001376879442x7

yC (x) = 0.9999999999− 3.9154× 1010x− 0.5000000004x2 − 0.3333333334x3

− 0.1254958091x4 − 0.03210343330x5 − 0.00769054484x6 − 0.001376879442x7

yP (x) = 0.9999999994− 4.5596× 10−10x− 0.4999999996x2 − 0.3333333333x3

− 0.128298960x4 − 0.02369397926x5 − 0.01609999890x6 + 0.001426271911x7

Example 2
Consider the linear seventh order boundary value problem

d7y

dx7
= −y(x)− ex(2x2 + 12x+ 35)

y(0) = 1, y′(0) = 1, y′′(0) = 0, y′′′(0) = −3, y(1) = 0, y′(1) = −e, y′′(1) = −4e

The exact solution of the problem is given as

y(x) = x(1− x)ex

The approximate solution obtained are as follows:

yh(x) = 1× 10−10 + 1.0000000001x− 0.5x3 − 0.336916565x4 − 0.1161229914x5

− 0.03872249365x6 − 0.008237949783x7

yl(x) = −4× 10−7 + 1.000x− 5× 107x2 − 0.500000x3 − 0.33691656x4 − 0.116122988x5

− 0.0387224936x6 − 0.008237949801x7

yc(x) = −4.4756× 10−11 + 1.00x− 1.25× 10−10x2 − 0.5000000002x3 − 0.3369165652x4

− 0.11612299914x5 − 0.03872249365x6 − 0.008237949780x7

yp(x) = −5.882× 10−12 + 1.000x− 6.06× 10−10x2 − 0.4999999990x3 − 0.3369165654x4

− 0.1161229913x5 − 0.03872249365x6 − 0.008237949782x7
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Example 3
Consider the linear seventh order boundary value problem

d7y

dx7
= y(x)− 7ex

y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = −2, y(1) = 0, y′(1) = −e, y′′(1) = −2e

The exact solution of the problem is given as

y(x) = (1− x)ex

The approximate solution obtained are as follows:

yh(x) = 0.9999999995 + 2× 10−10x− 0.5x2 − 0.3333333332x3 − 0.1254955983x4 − 0.03210406545x5

− 0.007689912717x6 − 0.001377090150x7

yl(x) = 0.9999999914− 7.4× 10−7x− 0.4999997x2 − 0.33333330x3 − 0.125538571x4 − 0.031975154x5

− 0.00781882387x6 − 0.001334119769x7

yc(x) = 1.00− 1.1088× 10−10x− 0.5x2 − 0.3333333335x3 − 0.1255385687x4

− 0.03197515433x5 − 0.007818823847x6 − 0.001334119772x7

yp(x) = −2.6799102× 10−9x+ 1.000000000x2 + 129.8381176x3 − 387.6411679x4

+ 386.4862070x5 − 128.6830991x6 − 0.00005765024021x7

6 Conclusion

In this paper, we solved seventh order BVPs arising from Mathematical mod-
eling of induction motors with two rotor circuits to test the efficiency of four
orthogonal polynomials using standard collocation method. We have taken three
test problems of linear type only; the results obtained from the three examples
show that Hermite and Chebyshev perform best followed by Legendre polynomial
and then the least in performance is Laguerre polynomial.
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Table 1. Table of Results for Example 1

width=1.4center
x Exact Hn(x) Ln(x) Tn(x) Pn(x)

0.00 1.0000 0.00000000000 3.870000× 10−7 1.00000× 10−10 6.000000× 10−10

0.10 0.9947 4.6217700× 10−5 4.399839× 10−4 4.621190× 10−5 4.641680× 10−5

0.20 0.9771 2.1757200× 10−5 2.752580× 10−3 2.17571× 10−5 1.946010× 10−5

0.30 0.9449 4.3430000× 10−7 6.173840× 10−3 4.34900× 10−7 8.223600× 10−6

0.40 0.8951 8.52031000× 10−6 9.208010× 10−3 8.521600× 10−6 2.402250× 10−5

0.50 0.8244 4.430700× 10−5 1.037330× 10−2 4.430870× 10−5 6.620910× 10−5

0.60 0.7288 4.202810× 10−5 9.259490× 10−3 4.202630× 10−5 1.877510× 10−5

0.70 0.6041 2.132330× 10−5 6.197460× 10−3 2.132200× 10−5 3.149300× 10−6

0.80 0.4451 5.814800× 10−6 2.739390× 10−3 5.814100× 10−6 3.371800× 10−6

0.90 0.2459 5.981560× 10−5 5.496220× 10−4 5.981530× 10−5 5.797555× 10−5

1.00 0.0000 8.000000× 10−12 4.818000× 10−6 1.08460× 10−10 6.000000× 10−10

Table 2. Table of Results for Example 2

width=1.4center
x Exact Hn(x) Ln(x) Tn(x) Pn(x)

0.00 1.0000 1.00000× 10−10 −4.00000× 10−7 −4.4756× 10−11 −5.88200× 10−12

0.10 0.9947 3.48922× 10−5 3.52878× 10−5 3.48925× 10−5 3.48925× 10−5

0.20 0.9771 2.11908× 10−5 2.08073× 10−5 2.11904× 10−5 2.110905× 10−5

0.30 0.9449 4.12330× 10−5 4.15991× 10−5 4.12334× 10−5 4.12335× 10−5

0.40 0.8951 1.37326× 10−5 1.33867× 10−5 1.37321× 10−5 1.37321× 10−5

0.50 0.8244 5.55262× 10−5 5.58514× 10−5 5.55268× 10−5 5.55269× 10−5

0.60 0.7288 3.13565× 10−5 3.16627× 10−5 3.13573× 10−5 3.13573× 10−5

0.70 0.6041 4.45510× 10−5 4.48421× 10−5 4.45518× 10−5 4.45519× 10−5

0.80 0.4451 3.06987× 10−5 3.09812× 10−5 3.06996× 10−5 3.06996× 10−5

0.90 0.2459 3.93292× 10−5 3.96114× 10−5 3.93301× 10−5 3.93300× 10−5

1.00 0.0000 1.06700× 10−9 −2.91400× 10−7 1.00000× 10−10 2.68000× 10−10
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Table 3. Table of Results for Example 3

width=1.4center
x Exact Hn(x) Ln(x) Tn(x) Pn(x)

0.00 1.0000 5.0000× 10−5 8.60000× 10−9 0.00000000 0.00000000
0.10 0.9947 4.62122× 10−5 4.63723× 10−5 4.62149× 10−5 4.62149× 10−5

0.20 0.9771 2.17567× 10−5 2.14988× 10−5 2.17221× 10−5 2.17221× 10−5

0.30 0.9449 4.34700× 10−7 8.37400× 10−7 5.53700× 10−7 5.53700× 10−7

0.40 0.8951 8.52070× 10−6 9.06300× 10−6 8.75800× 10−6 8.75790× 10−6

0.50 0.8244 4.43073× 10−5 5.50297× 10−5 4.46426× 10−5 4.46426× 10−5

0.60 0.7288 4.20277× 10−5 4.12422× 10−5 4.16718× 10−5 4.16718× 10−5

0.70 0.6041 2.13230× 10−5 2.05792× 10−5 2.10449× 10−5 2.10450× 10−5

0.80 0.4451 5.81460× 10−6 5.17860× 10−6 5.67400× 10−6 5.67420× 10−6

0.90 0.2459 5.98154× 10−5 5.98154× 10−5 5.97872× 10−5 5.97874× 10−5

1.00 0.0000 1.1700× 10−10 0.00000000 0.00000000 2.69000× 10−10


