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Investigating the Effect of Damping Coefficients on Euler-Bernoulli
Beam Subjected to Partially Distributed Moving Load
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Abstract

In this paper, the effect of damping coefficients on Euler-

Bernoulli Beam subjected to distributed load is studied. The

partial differential equation of order five was transformed to

ordinary differential equation of order two using finite fourier

sine transform. Finite difference method was used to solve the

resulting differential equation of order two. It was found that the

amplitude decreases as the speed of the load increases with the

introduction of damping coefficient and flexural rigidity while the

amplitude of the deflection increases when there is no damping.

1. Introduction

Beams are very important elements in land mechanical and aeronautical en-
gineering Beam is a piece of horizontal structure that is usually supported at
both ends. It can be in form of wood, metal or plastic, this is concern with the
theory describing the respond of elastic structure under the influence of partially
distributed moving loads. The most obvious example of structure subjected to
partially distributed moving loads is highway and railways bridges. Furthermore,
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there is a form of interaction between the motion of the bridge and suspension of
the vehicle. Some load applied statistically especially if the moving riding surface
is uneven, [3, 6, 8,9].
In the analysis of elastically supported beams, the elastic support is provided by
a load bearing medium referred to as the foundation along the length of the
beam. Such conditions of support can be found in large variety of geotechnical
problems. There are two basic types characterized by the fact that the pressure
in the foundation is proportional at every point to the deflection occurring at
that point and is independent of pressure or deflection produced at other point,
[5, 15, 17, 19].
In general, there are two types of motion of elastic structure [4, 5]:

(1) the Thick-structure theory which account for the effect of shear deforma-
tion and rotatory inertia while;

(2) the classical thin structures neglect the effects of shear information and
rotary inertia.

This research work has therefore been motivated by the above stated observa-
tions. An investigation into the effect of damping coefficients on Euler-Bernoulli
beam resting on a Winkler foundation subjected to partially distributed moving
load is presented, the resulting coupled Partial differential equations of model
one and model two are solved using finite difference method and series solution
method [18, 19].
All loads on a beam act parallel to an axis that is transverse to its longitudinal
axis. The length of a beam is much longer than its width and depth. Beam
theory provides equations for deflection and internal forces of the beam. Loads
are generally forces acting on a structure. When loads act on a structure they
produce stress and deformations [6, 23].
The problem of carrying out a dynamic analysis of the reactions of structures
under moving loads is known as moving load problem such moving load problems
are of practical important. The most obvious example of structures subjected to
moving loads is highway and railway bridges. The pertinent analysis is, however,
complicated by the fact that the mass of a moving vehicle or locomotive is usually
large compare with that of the bridge itself [7, 8, 9, 23].
Moving load problems may be grouped into two main classes. The first class
consist of problems involving concentrated forces (or point masses) moving with
a specified or an unspecified velocity while the other class deals with the problem
of vibration analysis of structures due to partially distributed uniformly moving
forces (or masses).One obvious application for the analysis of the second class is
the study of vibration of a bridge under a travelling train. Also, since no point or
concentrated mass exists physically, consideration of a load distribution interval
enhances the reality of problem formulation involving the second class.
Beams are generally known to be of four main types viz [23]:
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(1) Euler-Bernoulli beams
(2) Shear beams
(3) Rayleigh beams and
(4) Timoshenko beams.

Euler- Bernoulli beams are the simplest and most common ones. They are
known not to possess the effect of both shear deformation and rotatory inertia.
Shear beams are beams in which only the effects of shear deformation are retained
while Rayleigh beams take into consideration the effect of rotatory inertial only.
For Timoshenko beams, the effects of both Shear deformation and rotatory iner-
tia are retained. Beams vibrations described by the Timoshenko model have been
studied over the years by many authors [11,12,13,23]. The Timoshenko model is
an extension of the Euler-Bernoulli model by taking into account two additional
effects; shearing force effect and rotatory motion effect. In any beam except one
subjected to pure bending only, a deflection due to the shear stress occurs. The
exact solution to the beam vibration problem requires this deflection to be con-
sidered [15, 16, 23].
Beams are the most common type of structural components, particularly in civil
and mechanical engineering. A beam is a bar-like structural member whose pri-
mary function is to support transverse loading and carry it to the supports [7, 8,
9, 23]. The main difference of beams with respect to bars is the increased order
of continuity required for the assumed transverse-displacement functions to be
admissible [6, 23]. Not only must those functions be continuous but they must
possess continuous X first derivatives. To meet this requirement both deflections
and slopes are matched at nodal points. Slopes may be viewed as rotational de-
grees of freedom in the small-displacement assumptions used here [17, 23].
Beams can vary greatly in their geometry and composition [3, 23]. For instance, a
beam may be straight or curved. It may be made entirely from the same material
(homogenous), or it may be composed of different materials (composite) [16, 23].
Some of these things make analysis difficult but many engineering applications
involve cases that are not so complicated. Analysis is simplified if:
The beam is originally straight;
The beam experiences only linear elastic deformation; and
The beam is slender (its length to height ratio is greater than 10)
Only small deflections are considered (maximum deflection is less than 1/10 span).
In engineering, deflection is the degree to which a structural element is displaced
under a load [14, 23]. It may refer to an angle or a distance and is inversely pro-
portional to moment of inertia, modulus of elasticity is constant for all structural
steels, so the larger the moment of inertia, the smaller the deflection. Beams are
traditionally descriptions of building or civil engineering structural elements but
smaller structures like trucks or automobile frames, machine frames and other
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mechanical or structural systems contain beam structures that are designed and
analyzed in a similar fashion [21, 22, 23].

2. MATHEMATICAL FORMULATION

Nomenclature

M mass of the load
g acceleration due to gravity
ε fixed length of the load
ε length of the beam
g(x, t) distributed load (force per length)
KDI damping coefficient
I Second moment of inertia
W (x, t) Lateral Deflection of beam measured upward from equilibrium position with the load
A Cross sectional area of the beam
ρ Mass density of the load
E Modulus of Elasticity
X Axial Coordinate
K The coefficient of Winkler Foundation (force per length square)
m Constant Mass per unit length of the beam
t time
EI flexural rigidity of the beam
AD Viscoelastic material constant
KD Kelving-voigt damping coefficient

2.1. GOVERNING EQUATION. Consider a Euler-Bernoulli beam carrying
Partially distributed load advancing uniformly along the beam with a constant
velocity V . It is assumed the load is situated at the centre supported at t = 0.
The load M is uniformly distributed on a fixed lengthon the beam. Further, the
beam has a simple support at both ends.
The behaviour of the Euler-Bernoulli beam carrying the time carrying force is
govern by the partial differential equation is given by:

(1) EI
∂4W (x, t)

∂x4
+ ρA

∂2W (x, t)

∂t2
= q (x, t)

If the above include damping effects which are associated to the EBB, the corre-
sponding PDE is

(2) KDI
∂5W (x, t)

∂x4∂t
+ EI

∂4W (x, t)

∂x4
+ ρA

∂2W (x, t)

∂t2
+AD

∂W (x, t)

∂t
= q (x, t)
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where

(3) q (x, t) =
1

ε

[
−Mg −M

d2W

dt2

] [
H
(
x− ε+

ε

2

)
−H

(
x− ε− ε

2

)]
and H is the Heaviside function such that

(4) H
(
x− ε+

ε

2

)
−H

(
x− ε− ε

2

)
=

{
0 x < ε− ε

2
1 x > ε− ε

2

(5) H
(
x− ε+

ε

2

)
−H

(
x− ε− ε

2

)
=

{
0 x < ε+ ε

2
1 x > ε+ ε

2

(6)
[
H
(
x− ε+

ε

2

)
−H

(
x− ε− ε

2

)]
f (x) =

 0 if x < ε− ε
2

f (x) if ε− ε
2 < x < ε+ ε

2
0 if x > ε+ ε

2

Figure 2.1: The Uniform partially distributed moving load M on the beam AB

The Differential operatord2W
dt2

is defined as:

(7)
d2W

dt2 =
∂2W(x, t)

∂t2 + 2V
∂2W(x, t)

∂x ∂t
+ V 2∂

2W(x, t)

∂x2
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Substituting equation (3) and (4) into equation (2), then the governing equation
becomes:

(8)

KDI
∂5W (x, t)

∂x5∂t
+ EI

∂4W (x, t)

∂x4
+ ρA

∂2W (x, t)

∂t2
+AD

∂W (x, t)

∂t
,

=
1

ε

[
−Mg −M

∂2W(x, t)

∂t2 + 2MV
∂2W(x, t)

∂x ∂t
+MV 2∂

2W(x, t)

∂x2

]
2.2. BOUNDARY CONDITIONS. The boundary conditions are given as:

(9)
W (0, t) = 0 = W (L, t)

Wxx (0, t) = 0 = Wxx (L, t)

}
Without loss of generality, consider the initial condition of the form:

(10) W (0, t) = 0 = W (L, t)

2.3. METHOD OF SOLUTION. To obtain a solution for the differential
equation of equation (8), we used the finite Fourier sine transform to reduce the
equation from fifth order partial differential equation to a second order ordinary
differential equation. The finite Fourier sine transform is given by:

(11) W (m, t) =

∫ L

0
W (x, t) sin

mπ

l
x dx

with the inverse

(12) W (x, t) =
2

L

∫ ∞
m=1

W (m, t) sin
mπ

l
x dx

Applying equation (6) into equation (8) taking into account the boundary
conditions (9), we have

(13)
KDI

(
mπ
l

)4 dW (x,t)
dt + EI

(
mπ
l

)
W (x, t) + A d2W (x,t)

dt2
+AD

dW (x,t)
dt

= −Mg
ε −M

ε
d2W (x,t)

dt2
−2MV

ε

(
mπ
l

) dW (x,t)
dt − MV2 (mπ

l

)2
W (x, t)

Equation (13) becomes

(14)
d2W (x, t)

dt2
+ R

dW (x, t)

dt
+ S W (x, t) =

−Mg

ε

where

(15) R =
KDI

(
mπ
l

)
+ 2MV

ε +AD

ρA+ M
ε
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and

(16) S =
EI
(
mπ
l

)
− MV 2

ε +
(
mπ
l

)2
ρA+ M

ε

3. NUMERICAL SOLUTION

The reduced second order differential equation (14) is solved by applying finite
difference method and equation (14) becomes:

(17)

d2W(x,t)
dt2

= 1
h2

(wj+1 − 2Wj +Wj−1)

dwj+1−2Wj+Wj−1

dt = 1
2h (Wj+1−Wj − 1)


(18) Wj+1−Wj − 1 +R

(Wj+1−Wj−1)

2h
+ S Wj =

−Mg

ε

Multiply (18) by h2, we have

(19) Wj+1 − 2Wj +Wj−1 +
Rh

2
(Wj+1 −Wj−1) + Sh2Wj =

−Mgh2

ε

(20)

(
1 +

Rh

2

)
Wj+1 +

(
1 − Rh

2

)
Wj−1 +

(
Sh2 − 2

)
Wj =

−Mgh2

ε

Multiply equation (18) through by 2, we have

(21) (2 +Rh)Wj+1 + (2 −Rh)Wj−1 +
(
2Sh2 − 4

)
Wj =

−2Mgh2

ε

Rearrange equation (21) we have

(22) Wj+1 =
1

(2 +Rh)

[
−2Mgh2

ε
+
(
4 − 2Sh2

)
Wj + (Rh− 2)Wj−1

]
In view of equation (12), we have

(23) W (x, t) =
2

L

∞∑
m=1

[
1

(2 +Rh)

] [ −2Mgh2 +
(
4 − Sh2

)
Wj

+ (Rh− 2)Wj−1

]
sin

mπx

L

The above system (23) is obtained from the finite difference method and then
run by a MATLAB package.

3.1. Numerical Results and Discussion. The finite difference system (3.20)
is solved numerically. The package was used for the following data: M= 70kg,
m= 7.04kg, h = 1.05m, L= 10m, V= 3.3m/s, KD = 0, 0.2 MN/m3 and 0.4
NM/m3, E = 2x10−11, g = 9.8m/s, I = 1.04 x 106, π = 3.142.
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Figure 3.1: Deflection of Beam at various values of KD when the speed of the
moving load V is fixed

Figure 3.2: Effect of Speed of the Moving load on the Beam when KD=0

Figure 3.3: Effect of Speed of the Moving load on the Beam when KD = 20
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3.2. Discussion of Results. In this article, we discuss the effective damping,
comparing figures 3.1, 3.2 and 3.3 show the deflection of the beam at various
value of the damping coefficient KD when the speed (V ) of the moving load are
V= 6.9m/s, 6.6m/s, 6.3m/s. The results show that the amplitude of deflection of
the beam gradually decreases as the speed of the load increase. It is found that
the gradual decrease in the deflection of the beam is a result of damping coef-
ficient. The analysis of the result shows that for an un-damped Euler-Bernoulli
with moving load, the deflection of the beam keeps on increasing, while for Euler-
Bernoulli beam with damping coefficient, the deflection of the beam decreases as
the speed of the moving load decreases with the various values of damping coeffi-
cients. Finally, the result in this work agrees with what obtain in the Literature.
Hence the method employed in this work is accurate.
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