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FIVE SHORT NOTES ON BOUNDED MAPS

SUNDAY OLUYEMI

Abstract

This paper contributes five observations on bounded maps: (i)
An observation on the definition of a bounded set, (ii) Three
characterizations of bounded linear maps that parallel the usual
general topology characterizations of continuity, (iii) An analogue
of [2, PROPOSITION 3.12.1 p.254][7, Lemma 11.1.1, p.164] for
bounded maps, (iv) That the Banach-Steinhaus Closure Theo-
rem is also true for bounded maps, and (v) That the associated
bornological topology is also Hellinger-Teoplitz.

1. Introduction

A bounded linear map f : (X, τ) −→ (Y, µ) between separated locally convex
spaces, (X, τ) and (Y, µ), henceforth simply called a bounded map is one that
preserves bounded sets; that is, f(B) is µ-bounded for every τ -bounded subset
B of X. NOTE 1 explains the definition of a bounded set in a locally convex
space. [2, Exercise 3.7.7( f ), p.225] furnishes some characterizations of bounded
maps. We here add three more characterization (i) ⇐⇒ (iii), (iv) and (v) of
the theorem of NOTE 2 below. That our characterizations parallel the usual
General Topology characterizations of continuity [3, THEOREM 1.4, p.59] is
the contribution of NOTE 2; [4, LEMMA 5.1.23, p.156] and [4, Proposition
5.1.24, p.156] fall out as corollaries of our characterizations.
For separated locally convex spaces (X, τ)and (Y, µ) with continuous duals X ′

and Y ′, respectively, and associated weak topologies σ(X,X ′) and σ(Y, Y ′),
ifu : (X, τ) −→ (Y, µ) is a linear map, the continuity of the compositions fou,
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for all continuous linear functionals f on (Y, µ), does not force the continuity of
u; it only forces the(σ(X,X ′), σ(Y, Y ′))-continuity of u[2, PROPOSITION 3.12.1,
p.254][7, Lemma 11.1.1, p.164]. We show in NOTE 3 below that if the compo-
sitions fou are bounded maps for all bounded linear functionals f on (Y, µ), this
forces the boundedness ofu.
The Banach-Steinhaus Closure Theorem [7,THEOREM 9.3.7, p.137][2, COROL-
LARY to PROPOSITION 3.6.5, p.216] asserts the continuity of the pointwise
limit of a sequence {fn}∞n=1 of continuous linear maps fn : (X, τ) −→ (Y, µ), from
a barrelled space(X, τ) into an arbitrary separated locally convex space (Y, µ). In
NOTE 4 below, we show that if the sequence {fn}∞n=1 is a sequence of bounded
maps [on locally complete (X,µ), its pointwise limit is also bounded, and thus
uphold the Banach-Steinhaus Closure Theorem for bounded maps.
In NOTE 5, we identify another Hellinger-Toeplitz topology, the associated
bornological topology. We also show that the collection of Hellinger-Toeplitz
topologies is closed under taking supremum. The numbered results are the re-
sults established in this paper.
NOTATION AND LANGUAGE:
We shall follow [2], [4] and [7] for language and notation. All spaces considered
are assumed separated. By a lcs(X, τ) we shall mean a separated locally convex
space with continuous dual X ′, algebraic dual X#, bounded dual Xb, and asso-
ciated bornological topology τb[7, Problem, 4.106, p.50, Theorem 4.4.5, p.48]; τb
is the finest lcs topology on X having same bounded sets as τ .
For the dual pair 〈X,Y 〉, always separated [7, Paragraph preceding 8.2.2, p.107:
The separation conditions (a) and (b) on b...] we denote the weak, the Mackey
and the strong topology on X by σ(X,Y ′), τ(X,Y ) and β(X,Y ). The topology
on X of uniform convergence on the β(Y,X)-bounded subsets of Y is denoted
β∗(X,Y ). The scalar field of our spaces is K = R or C, the real field or the field
of the complex numbers. We denote by θ the zero of the linear space X while 0
denotes the zero of K. We signify with the end or absence of a proof.
NOTE 1 :
AN OBSERVATION ON THE DEFINITION OF A BOUNDED SET
IN A LOCALLY CONVEX SPACE
This observation becomes necessary since most books on locally convex space
theory, if not all, simply give the definition of a bounded set in a topological vec-
tor space without motivating it from the definition of a bounded set in a normed
linear space [7, First three lines of p.47][6, Second paragraph under ξ topologies,
p.167]; at best a book simply remarks that the definition clearly generalizes the
notion of a bounded set in a normed linear space [2, First two lines of the last
paragraph of p.108].
OBSERVATION 1:
Let (E, ||.||) be a normed linear space and suppose B(α, ε) denotes the ball of
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radius ε centered on θ. Then;

for all α > 0, αB(θ, ε) = B(θ, αε) (1)

OBSERVATION 2
With notation as in the preceding, then

B(θ, ε) ⊆ |λ|B(θ, αε)for all |λ| ≥ α > 0

Proof: By (1)
αB(θ, ε) = B(θ, αε)and

|λ|B(θ, ε) = B(θ, |α|ε)
And clearly, αε ≤ |β|ε, and so

B(θ, αε) ⊆ B(θ, |λ|ε)
.

Now suppose (E, ‖.‖) is a normed space and V is a neighborhood of zero, theta.
So, there exists ε > 0 such that V ⊇ B(θ, ε). Let φ 6= D ⊆ E bounded and so
there exists K > 0 such that {||x|| ≤ Kfor all x ∈ D}.
Hence, ∥∥∥∥ 1

K
εx

∥∥∥∥ ≤ 1 for all x ∈ D

And therefore, ∥∥∥∥ 1

K
εx

∥∥∥∥ ≤ ε for all x ∈ D

i.e., ∥∥∥∥ 1

K
x

∥∥∥∥ ∈ B(θ, ε) for all x ∈ D

from which follows that

x ∈ ε

K
B(θ, ε) for all x ∈ D

.i.e.

x ∈ αB(θ, ε) for all x ∈ D, where
K

ε
‖x‖ ≤ K for all x ∈ D.

Hence,
Dα ⊆ B(θ, ε) (2)

But by OBSERVATION 2:,

|λ| ≥ α −→ αB(θ, ε) ⊆ |λ|B(θ, ε) (3)

and so by (2) and (3), therefore,

D ⊆ |λ|B(θ, ε) ⊆ |λ|V for all |λ| ≥ α.



90 SUNDAY OLUYEMI

So, we have
THEOREM A:
If (E, ‖.‖) is a normed space, then, D is a bounded set in (E, ‖.‖)⇐⇒ for every
neighborhood of zero V of (E, ‖.‖), there exists α > 0 (depending on V ) such
that

D ⊆ |λ|B(θ, ε) ⊆ |λ|V for all |λ| ≥ α.
We therefore have
THEOREM B:
If (E, ‖.‖) is a normed linear space and φ 6= D ⊆ E, then, D is a bounded set of
(E, ‖.‖)⇐⇒ For every neighborhood V of zero θ of (E, ‖.‖) there exists αV > 0
such that

D ⊆ |λ|B(θ, ε) ⊆ |λ|V for all |λ| ≥ αV
Now let V be a neighborhood of zero and V ∗ a balanced neighborhood of zero

contained in the neighborhood V of the normed linear space (E, ‖.‖) [ At least
every ball is absorbing]. Let φ 6= D ⊆ E be a bounded set of (E, ‖.‖). By the
preceding theorem, therefore there exists αV ∗ > 0 and ε∗ > 0 such that

D ⊆ |λ|B(θ, ε∗) ⊆ |λ|V for all |λ| ≥ αV ∗ (4)

Since V ∗ is balanced, by [7, Problem 1.5.5, p.9] then |λ|V ∗ = αV ∗. There-
fore, since this argument can be reversed, (1) gives D is a bounded set of
(E, ‖.‖) ⇐⇒ D ⊆ V ∗ ⊆ λV for all |λ| ≥ αV ∗, But by [Definition 2.6.1, p.708]
this means D is absorbed by V . So, we have
THEOREM C:
Suppose (E, ‖.‖), is a normed linear space and φ 6= D ⊆ E Then, D is a bounded
set of (E, ‖.‖)⇐⇒ D is absorbed by every neighborhood of zero.

This explains the adopted definition of a bounded set in a topological vector
space.

DEFINITION B: [2, Definition 2.6.2, p.108] A set D of a topological vec-
tor space is bounded if it is absorbed by every neighborhood of zero.
Of course a normed space is a locally convex space, and, a locally convex space
is a topological vector space.

NOTE 2:
THREE CHARACTERIZATIONS OF BOUNDED LINEAR MAPS
Let (X, τ) be a lcs and B a disc, i.e., an absolutely convex bounded set, in (X, τ).
Then,B is an absorbing subset of its linear span XB in X, and (XB, qB), XB with
the gauge qB of B in XB, is a normed space [2, Proposition 3.5.6(a), p. 207][4,
Proposition 3.2.2, p. 82]. The sequence {xn}∞n=1 in X is said to locally con-
verge to x ∈ X in (X, τ) provided converges to x in (XB, qB) for some disc B
of (X, τ)[2, Exercise 3.7.7 p.225][4, Definition 5.1.1, p.151]; if x = θ, the zero
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of X, {xn}∞n=1 is then called a local null sequence. Well known is that {xn}∞n=1
is local null if and only if {λnxn}∞n=1 is a null sequence for some increasing un-
bounded real sequence {λn}∞n=1 , λn > 0 for all n [4, Proposition 5.1.3 (ii),
p.151][2,Exercise 3.7.7(b), p.225]. Let A ⊆ X. A point x ∈ Xis called a local
limit point of A if there exists a sequence of elements of A that locally converges
to x. A is called a locally closed set of (X, τ) if A is empty or contains all its
local limit points, while by the local closure, Ā1c , of A is meant the intersection
of all the locally closed sets of (X, τ) containing A [4, Definition 5.1.18, p. 155].
Clearly, the intersection of an arbitrary collection of locally closed sets is locally
closed, and so for A ⊆ X, Ā1c is locally closed. Clearly, also A is locally closed
if and only if A = Ā1c . Trivially also, a closed set is locally closed, as local
convergence implies ordinary convergence [2, Exercise 3.7.7(a), (c), p. 225].
Let (X, τ) and (Y, µ) be lcss and g : (X, τ) −→ (Y, µ) a linear map. We shall, in
this paper, call g a local sequentially continuous map if the sequence {g(xn)}∞n=1
is a local null sequence in (Y, µ) for every local null sequence {xn}∞n=1 in (X, τ).
Clearly, g is local sequentially continuous if {xn}∞n=1 locally converges to xx in
(X, τ) implies {g(xn)}∞n=1 locally converges to g(x)[4, Proposition 5.1.3(i), p.
151][4, Exercise 3.7.7 (a), p.225]. We shall also in this paper call the linear map
g : (X, τ) −→ (Y, µ) a lc-map if h−1(A) is a locally closed set in (X, τ) for every
locally closed set A of (Y, µ). [|Compare the statement of [4, Lemma 5.1.23(ii),
p.156]|]. This definition is similar to the definition of an sc-map by the author in
[5].
We note the following two theorems that fall out as corollaries of our characteri-
zations.
[4, Lemma 5.1.23, p.156] Let (X, τ) and (Y, µ) be css, and, f : (X, τ) −→ (Y, µ)
be a continuous linear map. Then, (i) f is local sequentially continuous, and
(ii) f is a lc-map.

[4, Proposition 5.1.24, p.156] Let f : (X, τ) −→ (Y, µ) be a continuous linear

map between the lcss(X, τ) and (Y, µ) Then, f(Ā1c) ⊆ ¯f(A)
1c

.
We now state our new characterizations; these are (i) ⇐⇒ (iii), (i)⇐⇒(iv) and
(i) ⇐⇒ (v) of the following.

THEOREM D
Let (X, τ) and (Y, µ) be lcss and f : (X, τ) −→ (Y, µ) a linear map. The following
are equivalent. (i) f is bounded.
(ii) f is local sequentially continuous.
(iii) f is a lc-map.

(iv) f(Ā1c) ⊆ ¯f(A)
1c

, for every A ⊆ X.
(v) ¯f−1(B)

1c ⊆ f−1(B̄)1c , for every B ⊆ Y .
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Proof We shall show that (i) ⇐⇒ (ii)⇐⇒(iii) =⇒ (iv) ⇐⇒ (v) =⇒ (iii)

(i) ⇐⇒ (ii) : This is [2, Exercise 3.7.7 (f ), p. 225]. (ii) =⇒ (iii) : The empty
set is locally closed, and so we have nothing to show if A is empty. So, assume the
non-empty set A is locally closed in (Y, µ) and f local sequentially continuous.
We proceed as in the proof of [4, Lemma 5.1.23, p. 156]. Let xn ∈ f1(A)for all
n and suppose {xn}∞n=1 locally converge to x. Then, by hypothesis, {f(xn)}∞n=1

converges locally to f(x). Since A is locally closed, f(x) ∈ A and so x inf1(A).
Hence, f1(A) is locally closed.
(ii) ⇐= (iii) : Suppose f is a lc-map and {xn}∞n=1 a local null sequence in (X, τ).
Hence, there exists an increasing unbounded sequence {λn}∞n=1 of positive real
numbers such that {f(xn)}∞n=1 is null in (X, τ). Suppose {f(xn)}∞n=1 is not local
null in (Y, µ). Then, there exists an open neighborhood of zero, U , of (Y, µ) such
that is not eventually in U. So, suppose is a subsequence of {f(λnxn)}∞n=1 with
terms not inU , and so it (the subsequence) is a sequence in the complement U U ′

is closed in (Y, µ) and so locally closed. By hypothesis, f−1(U ′) is locally closed
in (X, τ) and does not contain the zero θ of (X, τ) since U ′ does not contain the
zero of (Y, µ) and f is linear.
Now λnxn ∈ f1(U ′) for all k and {λnxn}∞n=1 is null in (X, τ). Hence, θ is a
local limit point of f1(U ′). Since f1(U ′) is locally closed, θ ∈ f1(U ′), and we
have a contradiction! Hence, the supposition that {f(xn)}∞n=1 is not local null
is false, and so is local null. Since {f(xn)}∞n=1 was arbitrary, it follows that f
is local sequentially continuous. (iii) =⇒ (iv): The proof here is the proof of
[4, Proposition 5.1.24, p.156]. But for clarity, we give the proof in detail. Let

f be a lc-map, and A ⊆ X . ¯f(A)
1c

is locally closed and so by hypothesis,

f−1( ¯f(A))
1c

is locally closed in (X, τ). Since A ⊆ f−1( ¯f(A))
1c

it follows that

Ā1c ⊆ f−1( ¯f(A))
1c

. Hence, f( ¯(A)
1c

) ⊆ ¯f(A))
1c

.
(iv) ⇐= (v) : Let A ⊆ X and put B = f(A) in (v). Then, we have

¯f−1(f(A))
1c ⊆ f−1

(
f ¯(A)

1c
)

(5)

Clearly, A ⊆ f−1(f(A)) and so

¯(A)
1c ⊆ f−1(f(A)) (6)

By (5) and (6), it now follows that

¯(A)
1c ⊆ f1(f(A)) ⊆ f−1

(
f ¯(A)

1c
)

¯f(A))
1c ⊆ ¯f(A))

1c
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(iv) =⇒ (v) : The proof here is the proof of [3, f =⇒ g of THEOREM 1.4,
p.59/60] mutatis mutandis. (v) =⇒ (iii) : Suppose B is a locally closed set. Then
B̄1c = B, and so by hypothesis

¯f−1(B)
1c ⊆ f−1 ¯(B)

1c
= f−1(B) ⊆ ¯f−1(B)

1c

.
Hence,

¯f−1(B)
1c

= f−1(B)

Since ¯f−1(B)
1c

is locally closed it follows that f−1(B) is locally closed.
REMARK:

In both normed linear space theory and locally convex space theory, linear map
f : (E, ‖.‖) −→ (F, ‖.‖), f : (G, τ) −→ (H,µ)[(E, ‖.‖) and (F, ‖.‖) normed spaces,
and (G, τ) and (H,µ) locally convex spaces] is called bounded if it preserves
bounded sets. In both theories also every continuous linear map f is bounded;
but while every bounded linear map between normed spaces is also continuous,
not every bounded linear map f between locally convex spaces is continuous [7,
Example 4.4.11, p.49].
NOTE 3:
AN ANALOGUE FOR BOUNDED MAPS :
Let (X, τ) and (Y, µ) be lcss with continuous duals X ′ and Y ′, respectively, and u :
(X, τ) −→ (X,µ) a linear map. If for all continuous linear functionals f on (X, τ)
the compositions fou are continuous, the u is (σ(X,X ′), σ(Y, Y ′))-continuous and
vice vasa [7, Lemma 11.1.1, p.164][2, PROPOSITION 3.12.1, p.254]. We
show in this NOTE 3 that, however, if four is a bounded linear functional for
all bounded linear functionals f on (Y, µ), then u is itself bounded. Thus, the
theorem we want to prove in this NOTE 3 is.

THEOREM E:
Let (X, τ) and (Y, µ) be lcss and u : (X, τ) −→ (Y, µ) a linear map. Then, u
is bounded if an only if and only if the compositions fou, for all bounded linear
functionals f on (Y, µ), are bounded maps.

For the proof we shall need some two lemmas which are of interest in them-
selves.

LEMMA A:
Let (X, τ) and (Y, µ) be lcss and f : (X, τ) −→ (Y, µ) a bounded linear map.
Then, f is (τ b, µb)-continuous.

Proof:
Let V be an absolutely convex bornivore of (Y, µ); a bornivore is a set absorbing
all bounded sets. We CLAIM that f−1(V ) is also an absolutely convex bornivore
of (X, τ). The absolute convexity of f−1(V ) is easily checked [2, p.80 and 85].
Suppose {xn}∞n=1 is a local null sequence in (X, τ). By NOTE 1, the sequence
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{f(xn)}∞n=1 is local null in (Y, µ), and so, since a local null sequence is null and
so bounded, there exists a real number λ > 0 such that f(xn) ∈ λV for all n[2,
p.108]. Hence, ( 1

λ)xn ∈ f−1(V ) for all n. That is, λxn ∈ f−1(V ), for all n and

so again by [2, paragraph following DEFINITION 2.6.1, p.108]f−1(V ) absorbs
the sequence {xn}∞n=1.
Since {xn}∞n=1 was an arbitrary local null sequence, then by [7, Problem 8.6.114,
p. 126]f−1(V ) is a bornivore. And so our CLAIM is true. The absolutely convex
bornivores of a lcs constitute a base of neighborhood of zero for its associated
bornological topology [2, Exercises 3.7.8(a), p. 226]. By the CLAIM it follows[2,
PROPOSITION 2.5.1, p.97] that f is (τ b, µb)-continuous.

In LEMMA A, we have shown that bounded linear map u : (X, τ) −→ (Y, µ)
between lcss(X, τ) and (Y, µ) is (τ b, µb)-continuous and so (τ b, µ)-continuous. We
show in the next lemma that the converse is true. Let B be a disc of (X, τ), XB

the linear span of B in X and qB the gauge of B in XB. If R denotes the
collection of all discs of (X, τ) then clearly ∪B∈RXB covers X. Following [7] we
denote the topology of the seminorm σqB by σqB. Well-known is [5, Definition
6.2.4 and Proposition 6.2.5, p. 174] that the inductive limit topology oy the
natural inclusions iB : (XB, σqB) −→ X is the associated bornological topology
of(X, τ), τ b.
LEMMA B:[2, Exercise 3.7.8 (b), p. 226] Let (X, τ) and (Y, µ) be lcss. The
bounded linear maps f : (X, τ) −→ (Y, µ) are the (τ b, µ)-continuous linear maps.

Proof :
Suppose linear map f : (X, τ) −→ (Y, µ) are the (τ b, µ)-continuous. Then, by [7,
THEOREM 13.1.8, p. 210] and the preceding discussion, the restriction

f |XB : (XB, σqB) −→ (Y, µ)

of f to (XB, σqB) is continuous for each disc B of (X, τ), and noting that by [6,
Theorem 12.2, p. 112] B is bounded in (XB, σqB), it follows that f is a bounded
map.

Proof of THEOREM B If u is bounded, then clearly fou is bounded for all
bounded linear functionals f on (Y, µ). This trivially establishes the implication
=⇒. Now for the implication ⇐=, suppose fou is bounded for all f ∈ Y b. Let
u′ : Y b −→ X#, u′(f) = fou, f ∈ Y b. Clearly, by hypothesis, u′ : Y b −→ Xb,
and so considering the dual pairs

〈
X,Xb

〉
and

〈
Y, Y b

〉
it follows from [7, Lemma

11.1.1,p.164][2, PROPOSITION 3.12.1, p. 254] that

u : (X,σ(X,Xb)) −→ (Y, σ(Y, Y b)

is continuous. By our LEMMA A, since continuous maps are bounded, there-
fore, u is (σ(X,Xb)b, σ(Y, Y b)b)-continuous. But clearly τ, σ(X,X ′) and τ b have
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same bounded sets, and also σ(X,Xb) and τ b have same bounded sets [7, THEO-
REM 8.4.1,p.114]. Clearly, (µb)b = µb, and all topologies of a dual pair have the
same associated bornological topology. Hence, since (X,Xb) and Xb are topolo-
gies of the dual pair

〈
X,Xb

〉
, σ(X,Xb)b = (τ b)b = τ b and σ(Y, Y b)b = (µb)b = µb.

So, u is (τ b, µb)-continuous, and so (τ b, µ)-continuous, from which follows by
LEMMA B that u is bounded.
We shall also apply LEMMA B in NOTE 4.
REMARK A :
The observation in the above proof that all topologies of a dual pair have the
same associated bornological topology is a crucial fact to be employed in NOTE
5 below to deduce that the associated bornological topology is duality invariant
and so definable for any separated dual pair 〈X,Y 〉.
REMARK B:
The role of the Hellinger-Toeplitz [7, Definition 11.1.5, p.165 and Section 11.2,
p.176.169] property of the associated bornological topology (established in our
LEMMA 1) in proving our theorem is worth noting. The Hellinger-Toeplitz
property of the associated bornological topology is the main thing in NOTE 4.
REMARK C:
LEMMA B: is a result common to a number of associated topologies of which
we mention some two here. For lcs(X, τ),
let τ+ = the finest locally convex topology on X having same convergent se-
quences as τ , and
τub =the finest locally convex topology on X having same Banach discs as τ .
(It is also the coarsest ultrabornological topology on X finer than τ). Disc B is
called a Banach disc if the normed space (XB, qB) is Banach.
(X, τ) is called C-Sequential [7, Problem 58.4.127, 128, 201, p.118] ifτ = τ+,
bornological if τ = τ b and ultrabornological if τ = τub. And for C-Sequential
/ bornological / ultrabornological lcs(X, τ) and arbitrary lcs(Y, µ) , the sequen-
tially continuous linear maps/ the bounded linear maps / the linear maps bounded
on Banach discs of (X, τ), f : (X, τ) −→ (Y, µ), are the continuous linear maps.
It can be shown that:

THEOREM E For arbitrary lcss(X, τ) and (Y, µ)
(a) the sequentially continuous linear maps f : (X, τ) −→ (Y, µ) are the (τ+, µ)−continuous
linear maps,
(b) the bounded linear maps are the (τ b, µ)-continuous linear maps [Our Lemma
B], and
(c) the linear maps f : (X, τ) −→ (Y, µ) bounded on Banach discs of (X, τ) are
the (τ b, µ)-continuous linear maps.

Observe that the result stated before the preceding theorem is immediately
deducible from the Theorem.
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REMARK D :
The proof of Lemma A: mutatis mutandis can also be used to establish Lemma
A: for τ+. That is,

THEOREM E
If for lcss(X, τ) and (Y, µ), u : (X, τ) −→ (Y, µ) is sequentially continuous then u
is (τ b, µb)-continuous.

We discuss these REMARKS in detail elsewhere.
NOTE 4 :

THE BANACH-STEINHAUS CLOSURE THEOREM IS TRUE FOR
BOUNDED MAPS:
In this NOTE 4 we show that the Banach-Steinhaus closure theorem [6, THE-
OREM 9.3.7, p.137][2, COROLLARY of PROPOSITION 3.6.5, p. 216] is also
valid for bounded maps.
A locally complete lcs is what Willansky in [7, 10.4.3, p.158] calls a Banach-
Mackey space. Lcs(X, τ) is locally complete [1][4, Definition 5.1.5, p.152, Proposi-
tion 5.1.6, p.152, Proposition 5.1.11,p.153][7, Definition 10.4.3, p.158] if β∗(X,X ′) =
β(X,X ′) . Since Lcs(X, τ) is called quasibarrelled if τ = β∗(X,X ′) and barrelled
if τ = β(X,X ′), and a bornological space is quasibarrelled, it follows, as is well-
known, from the definition of local completeness given, that a locally complete
borno- logical space is barrelled.
THEOREM F:(Banach-Steinhaus Closure Theorem[7, THEOREM 9.3., p.137][2,
COROLLARY of PROPOSITION 3.6.5, p.216])
Let (X, τ) be a barrelled lcs and (Y, µ) an arbitrary lcs. Suppose {fn}∞n=1 is a
sequence of continuous linear maps fn : (X, τ) −→ (Y, µ) converging pointwise to
the linear map g : (X, τ) −→ (Y, µ). Then, g is continuous.
THEOREM G: Let (X, τ) be a locally complete lcs and (Y, µ) an arbitrary lcs.
Suppose {fn}∞n=1 is a sequence of bounded maps fn : (X, τ) −→ (Y, µ) converging
pointwise to the linear map fn : (X, τ) −→ (Y, µ). Then,g is bounded.
Proof Since τ and τ b have same bounded sets and (X, τ) is locally complete, then
τ b is also a locally complete [4, Proposition 5.1.6 (i)⇐⇒ (iv), p.152] bornological
6.2.5 p. 174] space. The theorem now follows from LEMMA 2 of NOTE 3,
the Banach-Steinhaus Closure Theorem, and the observation preceding it, since
now Lcs(X, τ b) is a barrelled and bornological space and so the continuous maps

f : (X, τ b) −→ (Y, µ)

are the bounded maps

f : (X, τ) −→ (Y, µ)

It follows from our definition of local completeness and barrelledness given above
that a barrelled space is locally complete. For, generally,

τ ≤ β∗(X,X ′) ≤ β(X,X).
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Thus, we now have from THEOREM G :
THEOREM H: (Banach-Steinhaus Closure Theorem for bounded maps)
. Let lcsX, τ) be a barrelled space and (Y, µ) an arbitrary lcs. Suppose {fn}∞n=1
is a sequence of bounded linear maps fn : (X, τ) −→ (Y, µ) converging pointwise
to the linear map g : (X, τ) −→ (Y, µ). Then, g is bounded.
NOTE 5:
HELLINGER-TOEPLITZ TOPOLOGIES : In this (X, τ) NOTE 5 we fur-
nish (i) an addition to the class of Hellinger-Toeplitz topologies and (ii) a method
of obtaining new Hellinger-Toeplitz topologies from known ones. Let (X, τ) be a
lcs with continuous dual τ b. Then, the bornivores of (X, τ) are also the borni-
vores of (X,X ′) for any topology τ∗ of the dual pair 〈(X,X ′〉, since bounded sets
are duality invariant. Hence, since the associated bornological topology τ b has
a base of neighborhoods of zero comprising the absolutely convex bornivores of
(X, τ) it follows that τ b is also duality 〈X,X ′〉 invariant. We consequently here
denote it byb(X,X ′). Thus, all the topologies σ(X,X ′), τ(X,X ′), β(X,X ′) and
b(X,X ′) are all definable for the dual pair 〈X,X ′〉. Is the finest locally convex
topology having same convergent sequences as τ , τ+[7, Problem 8.4.124, p.117]
definable for 〈X,X ′〉? We shall extend Wilanskys concept [7, Definition 11.1.5,
p.165] of a Hellinger -Toeplitz topology by dispensing with the requirement of
admissibility.
DEFINITION B:
A separated locally convex topology σ(X,X ′), definable for any dual pair 〈X,X ′〉
shall be called a Hellinger-Toeplitz topology if whenever 〈X1, X

′
1〉 and 〈X2, X

′
2〉

are separated dual pairs and f : 〈X1, τ1〉 −→ 〈X2, τ2〉 is a continuous linear map
for some topologies τ1 and τ2 of the dual pairs 〈X1, X

′
1〉 and 〈X2, X2〉 respectively,

then f is also (σ(X1, X
′
1)) and (σ(X2, X

′
2))-continuous.

THEOREM I: Let 〈X,X ′〉 be a dual pair. Then,b(X,X ′)is a Hellinger-Toeplitz
topology.

Proof Let 〈X1, X1〉 and 〈X2, X2〉 be separated dual pairs and τ1 and τ2 com-
patible topologies on X1, X2, respectively, and f : 〈X1, τ1〉 −→ 〈X2, τ2〉 a con-
tinuous, and so bounded, linear map. Then, by LEMMA 1, f is (τ b1 , τ

b
2)-

continuous; that is, by the discussion preceding the DEFINITION above, f is
(b(X1, X

′
1), b(X2, X

′
2))-continuous.

THEOREM J:
Let 〈X,X ′〉 be a dual pair andH(X,X ′) andH∗(X,X ′) Hellinger-Toeplitz topolo-
gies. Then, their supremum H(X,X ′)V H∗(X,X ′) is a Hellinger-Toeplitz topol-
ogy.

Proof Let 〈X1, X1〉 and 〈X2, X2〉 be dual pairs, τ1 and τ2 compatible topologies
on X1, X2, respectively, and f : (X1, τ1) −→ (X2, τ2) a continuous linear map. By
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hypothesis, f : (X1, X
′
1) −→ (X2, X

′
2)-continuous and alsoH∗(X1, X

′
1), H

∗(X2, X
′
2)-

continuous. Consider the intersection U ∩ V of a neighborhood of zero, U of
H(X2, X

′
2) and a neighborhood of zero, V of H∗(X2, X

′
2). Then, f−1(U ∩ V ) =

f−1(U) ∩ f−1(V ) is, by the Hellinger-Toeplitz property of H and H∗, a neigh-
borhood of zero of H∗(X1, X

′
1)V H

∗(X2, X
′
2).

Hence, f is (H∗(X1, X
′
1)V H

∗(X1, X
′
1), H

∗(X2, X
′
2)V H

∗(X2, X
′
2))-continuous. There-

fore, HVH∗ is Hellinger-Toeplitz.

COROLLARY 7:
Let 〈X,X ′〉 be a dual pair. Then b(X,X ′)V β(X,X ′) is a Hellinger-Toeplitz topol-
ogy.

Given the dual pair 〈X,X ′〉, denote the topology b(X,X ′)V β(X,X ′) by b(X,X ′).
By COROLLARY 7 and [711.2.3 p.168] bβ? is a Hellinger-Toeplitz topology.

QUESTION 1:
Can we located bβ? That is, descriptions, characterizations and properties of
bβ??

REMARK E: THEOREM J is true of an arbitrary collection of Hellinger-
Toeplitz topologies.

APPLICATION :
Let (E, τ) be a lcs. Recall that (E, τ) is called bornological if τ = τ b. Let
(Eα, τα)α ∈ I be a family of lcss, E a linear space, fα : (Eα, τα) −→ E,α ∈ I
, linear maps such that ∪α∈Ifα(Eα) spans E . A locally convex topology τ on
E is called a test topology for maps {fα}α∈I [7 Definiion 13.1.1. p.209] if fα is
(τα, τ)-continuous for all α ∈ I. The finest of all test topologies, which we denote
here by ind.lim(fα, τα) is called the inductive limit topology of the space (Eα, τα)
by the linear maps {fα}α∈I . We establish the following well-known result.
THEOREM K: [7, Theorem 13.1.13, p.211] A separated inductive limit of
bornological lcs spaces is bornological.
Proof:
Let (Eα, τα)α ∈ I , be lcss, fα : (Eα, τα) −→ E linear maps into the linear space
E. Assume that ∪α∈Ifα(Eα) spans E and that ind. lim(fα, τα) is separated. Then,
the maps

fα : (Eα, τα) −→ (E, ind. lim(fα, τα))

are continuous. By THEOREM H, the linear maps

fα : (Eα, τ
b
α) −→ (E, ind. lim(fα, τα))b
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remain continuous. Hence, ind. lim(fα, τα)b is a test topology for the maps

fα : (Eα, τ
b
α)

and so by the definition of the inductive limit,

ind. lim(fα, τα))b ≤ ind. lim(fα, τ
b
α)

Thus, we have

ind. lim(fα, τ
b
α) ≤ ind. lim(fα, τα))b ≤ ind. lim(fα, τ

b
α) (3)

and so if all the spaces (fα, τ
b
α) are bornological, that is τ = τ bα for all α ∈ I,

then, by (3) we have that

ind. lim(fα, τ
b
α) = ind. lim(fα, τα))b

from which follows that (fα, τ
b) is bornological if separated.

By [7COROLLARY 11.2.6, p.169] the Mackey and the strong topologies τ(X,Y ), β(X,Y )
of the dual pair 〈X,Y 〉 are Hellinger-Toeplitz topologies. Similarly, by [7problem
11.2.101, p.169] the topology β∗(X,Y ) on X of uniform convergence on the
β(Y,X)-bounded sets is a Hellinger-Toeplitz topology. Recall that lcs(E, τ) with
dual E′ is called Mackey or quasibarrelled or barrelled if τ = τ(E,E′) or τ =
β ∗ (E,E′) or τ = τ(E,E′). We have, the proof ofTHEOREM J mutatis mu-
tandi.

THEOREM L: A separated inductive limit of Mackey/quasibarrelled/ bar-
reled spaces is Mackey/quasibarrelled/barreled.
QUESTION 2 : The topology τub (see Remark C) is also definable for a dual
pair 〈X,X ′〉 and so one can denote it ub(X,X ′). Is ub(X,X ′) Hellinger-Toeplitz?
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